我在tensorflow
中接受了LSTM培训,整个sess
被保存到saver = tf.train.Saver()
中。
整个代码如下所示。
def LSTM_RNN(_X, _weights, _biases):
# model architecture based on "guillaume-chevalier" and "aymericdamien" under the MIT license.
_X = tf.transpose(_X, [1, 0, 2]) # permute n_steps and batch_size
_X = tf.reshape(_X, [-1, n_input])
# Rectifies Linear Unit activation function used
_X = tf.nn.relu(tf.matmul(_X, _weights['hidden']) + _biases['hidden'])
# Split data because rnn cell needs a list of inputs for the RNN inner loop
_X = tf.split(_X, n_steps, 0)
# Define two stacked LSTM cells (two recurrent layers deep) with tensorflow
lstm_cell_1 = tf.contrib.rnn.BasicLSTMCell(n_hidden, forget_bias=1.0, state_is_tuple=True)
lstm_cell_2 = tf.contrib.rnn.BasicLSTMCell(n_hidden, forget_bias=1.0, state_is_tuple=True)
lstm_cells = tf.contrib.rnn.MultiRNNCell([lstm_cell_1, lstm_cell_2], state_is_tuple=True)
outputs, states = tf.contrib.rnn.static_rnn(lstm_cells, _X, dtype=tf.float32)
# A single output is produced, in style of "many to one" classifier, refer to http://karpathy.github.io/2015/05/21/rnn-effectiveness/ for details
lstm_last_output = outputs[-1]
# Linear activation
return tf.matmul(lstm_last_output, _weights['out']) + _biases['out']
# Graph input/output
x = tf.placeholder(tf.float32, [None, n_steps, n_input])
y = tf.placeholder(tf.float32, [None, n_classes])
# Graph weights
weights = {
'hidden': tf.Variable(tf.random_normal([n_input, n_hidden])), # Hidden layer weights
'out': tf.Variable(tf.random_normal([n_hidden, n_classes], mean=1.0))
}
biases = {
'hidden': tf.Variable(tf.random_normal([n_hidden])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
pred = LSTM_RNN(x, weights, biases)
# Loss, optimizer and evaluation
l2 = lambda_loss_amount * sum(
tf.nn.l2_loss(tf_var) for tf_var in tf.trainable_variables()
) # L2 loss prevents this overkill neural network to overfit the data
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=pred)) + l2 # Softmax loss
if decaying_learning_rate:
learning_rate = tf.train.exponential_decay(init_learning_rate, global_step*batch_size, decay_steps, decay_rate, staircase=True)
#decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps) #exponentially decayed learning rate
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost,global_step=global_step) # Adam Optimizer
while step * batch_size <= training_iters:
#print (sess.run(learning_rate)) #decaying learning rate
#print (sess.run(global_step)) # global number of iterations
if len(unsampled_indices) < batch_size:
unsampled_indices = list(range(0,len(X_train)))
batch_xs, raw_labels, unsampled_indicies = extract_batch_size(X_train, y_train, unsampled_indices, batch_size)
batch_ys = one_hot(raw_labels)
# check that encoded output is same length as num_classes, if not, pad it
if len(batch_ys[0]) < n_classes:
temp_ys = np.zeros((batch_size, n_classes))
temp_ys[:batch_ys.shape[0],:batch_ys.shape[1]] = batch_ys
batch_ys = temp_ys
# Fit training using batch data
_, loss, acc = sess.run(
[optimizer, cost, accuracy],
feed_dict={
x: batch_xs,
y: batch_ys
}
)
train_losses.append(loss)
train_accuracies.append(acc)
# Evaluate network only at some steps for faster training:
if (step*batch_size % display_iter == 0) or (step == 1) or (step * batch_size > training_iters):
# To not spam console, show training accuracy/loss in this "if"
print("Iter #" + str(step*batch_size) + ": Learning rate = " + "{:.6f}".format(sess.run(learning_rate)) + ": Batch Loss = " + "{:.6f}".format(loss) + ", Accuracy = {}".format(acc))
# Evaluation on the test set (no learning made here - just evaluation for diagnosis)
loss, acc = sess.run([cost, accuracy], feed_dict={x: X_test,y: one_hot(y_test)})
test_losses.append(loss)
test_accuracies.append(acc)
print("PERFORMANCE ON TEST SET: " + "Batch Loss = {}".format(loss) + ", Accuracy = {}".format(acc))
step += 1
print("Optimization Finished!")
save_path = saver.save(sess, "ActivityTrainedModels/model.ckpt")
然后,我还原模型以进行部署。
那时,我需要与Human pose estimation的另一个人体姿势估计器模型一起使用。姿势估算器已加载get_graph_path()
。
我无法同时加载两者。我只能加载一个。如果我都加载了,我会报错
NotFoundError (see above for traceback): Restoring from checkpoint failed. This is most likely due to a Variable name or other graph key that is missing from the checkpoint. Please ensure that you have not altered the graph expected based on the checkpoint. Original error:
Key smoothing/gauss_weight not found in checkpoint
[[node save/RestoreV2 (defined at ActivityDetection.py:219) = RestoreV2[dtypes=[DT_INT32, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT, DT_FLOAT], _device="/job:localhost/replica:0/task:0/device:CPU:0"](_arg_save/Const_0_0, save/RestoreV2/tensor_names, save/RestoreV2/shape_and_slices)]]
我的部署代码如下。
n_steps = 32 # 32 timesteps per series
n_input = 36 # num input parameters per timestep
n_hidden = 34 # Hidden layer num of features
n_classes = 3
global_step = tf.Variable(0, trainable=False)
# Graph input/output
x = tf.placeholder(tf.float32, [None, n_steps, n_input])
y = tf.placeholder(tf.float32, [None, n_classes])
# Graph weights
weights = {
'hidden': tf.Variable(tf.random_normal([n_input, n_hidden])), # Hidden layer weights
'out': tf.Variable(tf.random_normal([n_hidden, n_classes], mean=1.0))
}
biases = {
'hidden': tf.Variable(tf.random_normal([n_hidden])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
pred = LSTM_RNN(x, weights, biases)
sess = tf.InteractiveSession(config=tf.ConfigProto(log_device_placement=True))
init = tf.global_variables_initializer()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Activity Recognition')
parser.add_argument('--video', type=str, default='../../tf-openpose/TestVideos/2019_01-Feb Recording/C4-13.mp4')
parser.add_argument('--resolution', type=str, default='640x360', help='network input resolution. default=432x368')
parser.add_argument('--model', type=str, default='mobilenet_thin', help='cmu / mobilenet_thin')
parser.add_argument('--resize', type=str, default='0x0',
help='if provided, resize images before they are processed. default=0x0, Recommends : 432x368 or 656x368 or 1312x736 ')
parser.add_argument('--resize-out-ratio', type=float, default=4.0,
help='if provided, resize heatmaps before they are post-processed. default=1.0')
parser.add_argument('--show-process', type=bool, default=False,
help='for debug purpose, if enabled, speed for inference is dropped.')
parser.add_argument('--showBG', type=bool, default=True, help='False to show skeleton only.')
parser.add_argument('--s', type=str, default='00:00', help='start time to crop')
parser.add_argument('--e', type=str, default='00:00', help='end time to crop')
args = parser.parse_args()
w, h = model_wh(args.resize)
if w > 0 and h > 0:
e = TfPoseEstimator(get_graph_path(args.model), target_size=(w, h))
else:
e = TfPoseEstimator(get_graph_path(args.model), target_size=(img_w, img_h))
'''with tf.Session() as sess:
sess.run(init)
saver = tf.train.Saver()
saver.restore(sess, tf.train.latest_checkpoint('/home/coie/venvp3/HumanActivityRecognition/HumanActivityRecognition/ActivityTrainedModels/'))
print("Model restored.")
all_vars = tf.trainable_variables()
for i in range(len(all_vars)):
name = all_vars[i].name
values = sess.run(name)
print('name', name)
#print('value', values)
print('shape',values.shape)'''
#result = sess.run(pred, feed_dict={x: X_test[24:27]})
#for r in range(len(result)):
#print("predicted activity:", LABELS[result[r].argmax(0)])
如果加载TfPoseEstimator
,则无法恢复LSTM模型。
我该如何解决问题?
答案 0 :(得分:0)
我的LSTM类定义为
class ActivityRecognition:
#Utility functions for training:
def LSTM_RNN(self,_X, _weights, _biases):
# model architecture based on "guillaume-chevalier" and "aymericdamien" under the MIT license.
_X = tf.transpose(_X, [1, 0, 2]) # permute n_steps and batch_size
_X = tf.reshape(_X, [-1, self.n_input])
# Rectifies Linear Unit activation function used
_X = tf.nn.relu(tf.matmul(_X, _weights['hidden']) + _biases['hidden'])
# Split data because rnn cell needs a list of inputs for the RNN inner loop
_X = tf.split(_X, self.n_steps, 0)
# Define two stacked LSTM cells (two recurrent layers deep) with tensorflow
lstm_cell_1 = tf.contrib.rnn.BasicLSTMCell(self.n_hidden, forget_bias=1.0, state_is_tuple=True)
lstm_cell_2 = tf.contrib.rnn.BasicLSTMCell(self.n_hidden, forget_bias=1.0, state_is_tuple=True)
lstm_cells = tf.contrib.rnn.MultiRNNCell([lstm_cell_1, lstm_cell_2], state_is_tuple=True)
outputs, states = tf.contrib.rnn.static_rnn(lstm_cells, _X, dtype=tf.float32)
lstm_last_output = outputs[-1]
return tf.matmul(lstm_last_output, _weights['out']) + _biases['out']
def __init__(self):
self.n_steps = 32 # 32 timesteps per series
self.n_input = 36 # num input parameters per timestep
self.n_hidden = 34 # Hidden layer num of features
self.n_classes = 3
self.global_step = tf.Variable(0, trainable=False)
# Graph input/output
self.x = tf.placeholder(tf.float32, [None, self.n_steps, self.n_input])
self.y = tf.placeholder(tf.float32, [None, self.n_classes])
# Graph weights
self.weights = {
'hidden': tf.Variable(tf.random_normal([self.n_input, self.n_hidden])), # Hidden layer weights
'out': tf.Variable(tf.random_normal([self.n_hidden, self.n_classes], mean=1.0))
}
self.biases = {
'hidden': tf.Variable(tf.random_normal([self.n_hidden])),
'out': tf.Variable(tf.random_normal([self.n_classes]))
}
self.pred = self.LSTM_RNN(self.x, self.weights, self.biases)
self.sess = tf.InteractiveSession(config=tf.ConfigProto(log_device_placement=True))
self.init = tf.global_variables_initializer()
with tf.Session() as sess:
self.sess.run(self.init)
saver = tf.train.Saver()
saver.restore(sess, tf.train.latest_checkpoint('ActivityTrainedModels/'))
print("Model restored.")
#all_vars = tf.trainable_variables()
#for i in range(len(all_vars)):
#name = all_vars[i].name
#values = sess.run(name)
#print('name', name)
#print('value', values)
#print('shape',values.shape)
def inference(self,test):
result = self.sess.run(selfpred, feed_dict={x: test})
for r in range(len(result)):
activity=LABELS[result[r].argmax(0)]
return activity
if __name__ == "__main__":
ActivityRecognition()