我正在编辑一个程序,该程序给了我一个稀疏矩阵
具有这种表示法的矩阵
Y =
(0, 0) -17.3611111111j
(3, 0) 17.3611111111j
(7, 1) 16j
(1, 1) -16j
(2, 2) -17.0648464164j
(5, 2) 17.0648464164j
(8, 3) (-1.36518771331+11.6040955631j)
(3, 3) (3.30737896203-39.3088887261j)
(0, 3) 17.3611111111j
(4, 3) (-1.94219124871+10.5106820519j)
(4, 4) (3.22420038714-15.8409270142j)
(3, 4) (-1.94219124871+10.5106820519j)
(5, 4) (-1.28200913842+5.58824496236j)
(5, 5) (2.43709661931-32.1538618051j)
(2, 5) 17.0648464164j
(4, 5) (-1.28200913842+5.58824496236j)
(6, 5) (-1.15508748089+9.78427042636j)
(6, 6) (2.77220995414-23.3032490233j)
(5, 6) (-1.15508748089+9.78427042636j)
(7, 6) (-1.61712247325+13.6979785969j)
(7, 7) (2.80472685254-35.4456131302j)
(6, 7) (-1.61712247325+13.6979785969j)
(8, 7) (-1.18760437929+5.97513453331j)
(1, 7) 16j
(8, 8) (2.5527920926-17.3382300964j)
(7, 8) (-1.18760437929+5.97513453331j)
(3, 8) (-1.36518771331+11.6040955631j)
我想以正常方式获取矩阵
x = np.array ([[-17.3611111111j, 0, 0, 17.3611111111j, 0, 0, 0, 0, 0],
[0, -16j, 0, 0, 0, 0, 0, 16j, 0],
[0, 0, -17.0648464164j, 0, 0, 17.0648464164j, 0, 0, 0],
[17.3611111111j, 0, 0, (3.30737896203-39.3088887261j), (-1.94219124871+10.5106820519j), 0, 0, 0, (-1.36518771331+11.6040955631j)],
[0, 0, 0, (-1.94219124871+10.5106820519j), (3.22420038714-15.8409270142j), (-1.28200913842+5.58824496236j), 0, 0, 0],
[0, 0, 17.0648464164j, 0, (-1.28200913842+5.58824496236j), (2.43709661931-32.1538618051j), (-1.15508748089+9.78427042636j), 0, 0 ],
[0, 0, 0, 0, 0 , (-1.15508748089+9.78427042636j), (2.77220995414-23.3032490233j), (-1.61712247325+13.6979785969j), 0 ],
[0, 16j, 0, 0, 0, 0, (-1.61712247325+13.6979785969j), (2.80472685254-35.4456131302j), (-1.18760437929+5.97513453331j)],
[0, 0, 0, (-1.36518771331+11.6040955631j), 0, 0, 0, (-1.18760437929+5.97513453331j), (2.5527920926-17.3382300964j)]])
如何将第一个矩阵转换为第二个矩阵?
答案 0 :(得分:0)
我猜您想从help(scipy.sparse)
转换稀疏矩阵的格式:
bsr_matrix - Block Sparse Row matrix
coo_matrix - A sparse matrix in COOrdinate format
csc_matrix - Compressed Sparse Column matrix
csr_matrix - Compressed Sparse Row matrix
dia_matrix - Sparse matrix with DIAgonal storage
dok_matrix - Dictionary Of Keys based sparse matrix
lil_matrix - Row-based linked list sparse matrix
在这种情况下,您只需要将其转换为数组即可:
x = Y.toarray()