我想为那些努力将R2,斜率,截距和p值自动添加到多面图形的人共享一些代码。这段代码向您展示了如何计算回归拟合,并将其作为多个回归(ancova)的标签放置在图形上。
下面的图形是在矢量软件中进行快速修饰后的图形。
我尝试注释尽可能多的行。希望这对您有所帮助!
答案 0 :(得分:0)
在此示例中,我将比较用紫外线(光)照射的样品与未照射(深色)的样品
#I called mine Ancovas. --> Note, export your df as .csv to work with it in R.
Ancovas <- read.csv("~/Dropbox/YOUR DATAFILE NAME.csv")
#Next, subset your data by the two conditions (e.g. "l"=light, "d"=dark), and both treatments (e.g. "MQ"=water, "DOM"=media)
AncovasL <- Ancovas[(Ancovas$UV == "Light"), ]
AncovasL.MQ <- AncovasL[(AncovasL$DOM == "MQ"), ]
AncovasL.DOM <- AncovasL[(AncovasL$DOM == "DOM"), ]
AncovasD <- Ancovas[(Ancovas$UV == "Dark"), ]
AncovasD.MQ <- AncovasD[(AncovasD$DOM == "MQ"), ] #This code only keeps what is inside the brackets
AncovasD.DOM <- AncovasD[(AncovasD$DOM == "DOM"), ] #Note, adding and "!" after square bracket removes what is in " ".
#--> this code was gathered from several sites.
#note: I don't understand the logic of how the numbers in brackets are organized. But this essentially pulls some information from the fit model. i.e. [9] means find the 9th value in the list (I think)
regression = function(Ancovas){
fit <- lm(AvgBio ~ Exposure, data=Ancovas)
slope <- round(coef(fit)[2],1)
intercept <- round(coef(fit)[1],0)
R2 <- round(as.numeric(summary(fit)[8]),3)
R2.Adj <- round(as.numeric(summary(fit)[9]),3)
p.val <- signif(summary(fit)$coef[2,4], 3)
c(slope,intercept,R2,R2.Adj, p.val) }
#Call your column "Treatments"
regressions_dataL.MQ <- ddply(AncovasL.MQ, "Treatment", regression) #For light samples using water
regressions_dataL.DOM <- ddply(AncovasL.DOM, "Treatment", regression) #For light samples using media
regressions_dataD.MQ <- ddply(AncovasD.MQ, "Treatment", regression) #For dark samples using water
regressions_dataD.DOM <- ddply(AncovasD.DOM, "Treatment", regression) #For dark samples using media
#Rename columns
colnames(regressions_dataL.MQ) <-c ("Treatment","slope","intercept","R2","R2.Adj","p.val")
colnames(regressions_dataL.DOM) <-c ("Treatment","slope","intercept","R2","R2.Adj","p.val")
colnames(regressions_dataD.MQ) <-c ("Treatment","slope","intercept","R2","R2.Adj","p.val")
colnames(regressions_dataD.DOM) <-c ("Treatment","slope","intercept","R2","R2.Adj","p.val")
#Yes I like to hyper control every aspect of my theme
theme_new <- theme(panel.background = element_rect(fill = "white", linetype = "solid", colour = "black"),
legend.key = element_rect(fill = "white"), panel.grid.minor = element_blank(), panel.grid.major = element_blank(),
axis.text.x=element_text(size = 11, angle = 0, hjust=0.5), #axis numbers (set it to 1 to place it on left side, 0.5 for middle and 0 for right side)
axis.text.y=element_text(size = 13, angle = 0),
plot.title=element_text(size=15, vjust=0, hjust=0), #hjust 0.5 to center title
axis.title.x=element_text(size=14), #X-axis title
axis.title.y=element_text(size=14, vjust=1.5), #Y-axis title
legend.position = "top",
legend.title = element_text(size = 11, colour = "black"), #Legend title
legend.text = element_text(size = 8, colour = "black", angle = 0), #Legend text
strip.text.x = element_text(size = 9, colour = "black", angle = 0), #Facet x text size
strip.text.y = element_text(size = 9, colour = "black", angle = 270)) #Facet y text size
guides_new <- guides(color = guide_legend(reverse=F), fill = guide_legend(reverse=F)) #Controls the order of your legend
Colours <-
rainbow_hcl(length(levels(factor(StackedTable$DOM))), start = 30, end = 300) #Yes I am Canadian so Colours has a "u"
Colours[5] <- "#47984c" #Green
Colours[4] <- "#7b64b4" #Purple-grey
Colours[3] <- "#ff7f50" #Orange
Colours[2] <- "#cc3636" #Red
Colours[1] <- "#4783ba" #Blue
#Making plot for panel A ("Dark condition")
PlotA <-
ggplot(AncovasD, aes(x=as.numeric(Time.h), y=as.numeric(Measurement), fill=as.factor(Treatment))) +
geom_smooth(data=subset(AncovasD,Treatment =="MQ"), aes(Time.h,Measurement,color=factor(Treatment)),method="lm", formula = y~x, se=T, show.legend = F) +
geom_smooth(data=subset(AncovasD,Treatment =="DOM"), aes(Time.h,Measurement,color=factor(Treatment)),method="lm", formula = y~x, se=T, show.legend = F) + #You need this line twice, once for each condition
geom_errorbar(data=AncovasD, aes(ymin=Measurement-SD, ymax=Measurement+SD), width=0.2, colour="#73777a", size = 0.5) + #Change width based on the size of your X-axis
geom_point(shape = 21, size = 3, colour = "black", stroke = 1) + #colour is the outline of the circle, stroke is the thickness of that outline
facet_grid(Treatment ~ UV) + #This places all your treatments into a grid. Change the order if you want them horizontal. Use "." if you do not want a label.
geom_label(data=regressions_dataD.MQ, inherit.aes=FALSE, size=0.7, colour=Colours[1], #Add label for DOM regressions, specify same colour as your legend, change size depending on how large you want the text
aes(x=-0.1, y=41, label=paste(" ", "m == ", slope, "\n " , #replace this line with the values you want: e.g. R-squared=("R2 == ", R2.Adj) ; intercept=("b == ", intercept). The "\n " makes a second line
" ", "p == ", p.val ))) + #This completes the first label. Repeat same process for second label.
geom_label(data=regressions_dataD.DOM, inherit.aes=FALSE, size=0.7, colour=Colours[2],
aes(x=-0.1, y=4, label=paste(" ", "m == ", slope, "\n " ,
" ", "p == ", p.val )))
#Now for the irradiated samples "light" plot (Panel B)
PlotB <-
ggplot(AncovasL, aes(x=as.numeric(Time.h), y=as.numeric(Measurement), fill=as.factor(Treatment))) + #Same as above but use your second dataframe.
geom_smooth(data=subset(AncovasL,Treatment =="MQ"), aes(Time.h,Measurement,color=factor(Treatment)),method="lm", formula = y~x, se=T, show.legend = F) +
geom_smooth(data=subset(AncovasL,Treatment =="DOM"), aes(Time.h,Measurement,color=factor(Treatment)),method="lm", formula = y~x, se=T, show.legend = F) +
geom_errorbar(data=AncovasL, aes(ymin=Measurement-SD, ymax=Measurement+SD), width=0.2, colour="#73777a", size = 0.5) +
geom_point(shape = 21, size = 3, colour = "black", stroke = 1) +
facet_grid(Treatment ~ UV) +
geom_label(data=regressions_dataL.MQ, inherit.aes=FALSE, size=0.7, colour=Colours[1],
aes(x=-0.1, y=41, label=paste(" ", "m == ", slope, "\n " ,
" ", "p == ", p.val ))) +
geom_label(data=regressions_dataL.DOM, inherit.aes=FALSE, size=0.7, colour=Colours[2],
aes(x=-0.1, y=4, label=paste(" ", "m == ", slope, "\n " ,
" ", "p == ", p.val )))
#Now add themes to both plots and the things that differ (i.e. removing tick marks...)
#Note: the following code can be integrated in the script above, but I find it cleaner to separate this part as these tend to change depending on the size of your pdf export.
#These were designed for a single column publication figure --> 3.75" wide by 6" high.
PlotA <- PlotA +
scale_fill_manual(values=Colours) + scale_colour_manual(values=Colours) +
scale_x_continuous(limits=c(-0.75,4.75), breaks=seq(0,4, by = 2)) +
scale_y_continuous(limits=c(-10,165), breaks=seq(0,165, by = 50)) + #Setting breaks only works if it matches your limits. First specify your limits, then set the breaks.
theme_new + guides_new +
theme(strip.text.y = element_blank(), legend.position = "none", #removes the Y facet strip && the legend so I can stick the figures together
plot.margin=unit(c(-0.9,0.8,0,0.5), "cm") ) + #again, these numbers are specific to a 3.75" wide figure. You will need to play with these numbers to adjust your figure.
labs(title="", y="Biouptake (%)", x=" ", color="",fill="") #remove X-axis label, we will only use one label in the next script.
PlotB <- PlotB +
scale_fill_manual(values=Colours) + scale_colour_manual(values=Colours) + #calls the colours I specified earlier
scale_x_continuous(limits=c(-0.75,4.75), breaks=seq(0,4, by = 2)) +
scale_y_continuous(limits=c(-10,165), breaks=seq(0,165, by = 50)) + #Setting breaks only works if it matches your limits. First specify your limits, then set the breaks.
theme_new + guides_new + #calls the previously set theme and guides.
theme(axis.text.y = element_blank(), #adds a modifier to certain parts of the theme that are not the same for this plot
axis.ticks.y.left = element_blank(), axis.title.x=element_text(hjust=2.2), #removes tick marks and a title.
plot.margin=unit(c(-0.9,0.5,0,-1.3), "cm") ) + #Reduce panel margins by: First=top, Second=right, Third=bellow, Fourth=left --> To remember order, think TRouBLe
labs(title="", y=" ", x="Irradiation time (h)", color=" ",fill=" ") #If you want a legend title, add it after color and after fill.
ggarrange(PlotA, PlotB, ncol = 2, nrow = 1,
widths = c(1.65,1), heights = c(1,1), #c(1.6 makes panelA same width as B when exporting figure at 3.75"). This ratio is only apparent after exporting the figure in next line.
legend = "top", common.legend = TRUE)
#Note: leave this line with a hashmark until you are happy with the figure. Otherwise you will accidently override some figures.
#ggsave("Name of figure HERE.svg", width=3.75, height=6, path="~/Dropbox/") #Note: change the .svg to .pdf if you do not need to modify anything
#Hope this is helpful for some of you. Took me a long time to figure all of these parts out.
#This script takes some work to initially get going, but once done, it automates all of your figures with stats.
#Finally, you will likely need to do some slight modifications to the figure using a vector software. I'm on a Mac and recommend "Graphic". It can be found in the app store. If so, make sure to export as an SVG, and as a PDF once its modified by your software.
您的身材应该看起来像这样。我故意使文本很小,以便框不与回归重叠。如果您只是想要快速又脏的数字,请在此处停止。这对于大多数人来说应该足够了。
但是,如果该图一定要出版,请使用矢量编辑软件(我在Mac上使用Graphic),然后在标签上方放置一个白框,然后手动将其写入(就像我在第一个图中所做的那样)
干杯。