我正在尝试将多个文本功能分类为一个状态。数据包括来自具有不同组件的不同服务器的消息(错误和警告),并将导致不同的状态。例如:
tidyselect::vars_select()
这是向量化的一部分:
ServerName Name Description Severity State
-------------- -------- ----------------------------------------- ---------- -------------
QWERT-XY-123 MySQL Service not available on target machine error important
QWERT-XY-146 Oracle Service caused an error warning unimportant
...
现在我要适合模型:
from sklearn.feature_extraction.text import HashingVectorizer
vectorizer = HashingVectorizer()
X_Servername = df["ServerName"].values
X_Name = df["Name"].values
X_Description = df["Description"].values
X_Severity = df["Severity"].values
y = df["State"].values
X_Servername = vectorizer.transform(X_Servername)
X_Name = vectorizer.transform(X_Name)
X_Description = vectorizer.transform(X_Description)
features=list(zip(X_Servername,X_Name,X_Description,X_Severity))
结果是以下错误:
from sklearn.svm import SVC
model = SVC(kernel = "linear", probability=True)
model.fit(features, y)
所以我的问题是关于如何在hashingvectorizer中使用多个功能,还是将所有功能都放在一行中的唯一方法?
感谢您的帮助。
失败者是关于如何构建矢量化特征列表的问题。代替:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-183-71455dd49f0b> in <module>()
2
3 model = SVC(kernel = "linear", probability=True)
----> 4 model.fit(features, y)
5
6 #print(model.score(X_test, y))
D:\Enviroment\Anaconda3\lib\site-packages\sklearn\svm\base.py in fit(self, X, y, sample_weight)
147 self._sparse = sparse and not callable(self.kernel)
148
149 --> X, y = check_X_y(X, y, dtype=np.float64, order='C', accept_sparse='csr')
150 y = self._validate_targets(y)
151
D:\Enviroment\Anaconda3\lib\site-packages\sklearn\utils\validation.py in check_X_y(X, y, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, multi_output, ensure_min_samples, ensure_min_features, y_numeric, warn_on_dtype, estimator)
571 X = check_array(X, accept_sparse, dtype, order, copy, force_all_finite,
572 ensure_2d, allow_nd, ensure_min_samples,
573 --> ensure_min_features, warn_on_dtype, estimator)
574 if multi_output:
575 y = check_array(y, 'csr', force_all_finite=True, ensure_2d=False,
D:\Enviroment\Anaconda3\lib\site-packages\sklearn\utils\validation.py in check_array(array, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d, allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)
431 force_all_finite)
432 else:
433 --> array = np.array(array, dtype=dtype, order=order, copy=copy)
434
435 if ensure_2d:
ValueError: setting an array element with a sequence.
我现在使用此功能,其中features=list(zip(X_Servername,X_Name,X_Description,X_Severity))
附加所有创建的矢量化值(X_ServerName,X_Name等):
extracted
答案 0 :(得分:0)
请尝试以下代码:
from sklearn_pandas import DataFrameMapper, gen_features
from sklearn.feature_extraction.text import HashingVectorizer
from sklearn.preprocessing import LabelEncoder
cat_features = ["ServerName", "Name", "Description", "Severity"]
gf = gen_features(cat_features, [HashingVectorizer])
mapper = DataFrameMapper(gf)
cat_features_transformed = mapper.fit_transform(df)
target_name_encoded = LabelEncoder().fit_transform(df["State"])
from sklearn.svm import SVC
model = SVC(kernel = "linear", probability=True)
model.fit(cat_features_transformed, target_name_encoded)
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=3, gamma='auto_deprecated',
kernel='linear', max_iter=-1, probability=True, random_state=None,
shrinking=True, tol=0.001, verbose=False)
### For test/prediction part ###
test_features_transformed = mapper.transform(df_test)
predictions = model.predict(test_features_transformed)
注意,您可能需要运行
pip install sklearn-pandas
如果您的计算机上未安装sklearn-pandas
。
上述解决方案将使您(1)将数据转换为合适的格式,然后(2)通过transform
方法将相同的拟合转换应用于测试数据。
请告诉我们是否有帮助