通过带有参数的USB发送数据。
我想将数据发送到我的USB设备,但是所有示例仅显示其中请求仅包含1字节数据的情况。我需要发送带有参数的请求的通讯文档状态包含1个字数据。我该怎么办?
import numpy as np
import pandas as pd
import os
from tqdm import tqdm
# Fix seeds
from numpy.random import seed
seed(639)
from tensorflow import set_random_seed
set_random_seed(5944)
# Import
float_data = pd.read_csv("train.csv", dtype={"acoustic_data": np.float32, "time_to_failure": np.float32}).values
# Helper function for the data generator. Extracts mean, standard deviation, and quantiles per time step.
# Can easily be extended. Expects a two dimensional array.
def extract_features(z):
return np.c_[z.mean(axis=1),
z.min(axis=1),
z.max(axis=1),
z.std(axis=1)]
# For a given ending position "last_index", we split the last 150'000 values
# of "x" into 150 pieces of length 1000 each. So n_steps * step_length should equal 150'000.
# From each piece, a set features are extracted. This results in a feature matrix
# of dimension (150 time steps x features).
def create_X(x, last_index=None, n_steps=150, step_length=1000):
if last_index == None:
last_index=len(x)
assert last_index - n_steps * step_length >= 0
# Reshaping and approximate standardization with mean 5 and std 3.
temp = (x[(last_index - n_steps * step_length):last_index].reshape(n_steps, -1) - 5 ) / 3
# Extracts features of sequences of full length 1000, of the last 100 values and finally also
# of the last 10 observations.
return np.c_[extract_features(temp),
extract_features(temp[:, -step_length // 10:]),
extract_features(temp[:, -step_length // 100:])]
# Query "create_X" to figure out the number of features
n_features = create_X(float_data[0:150000]).shape[1]
print("Our RNN is based on %i features"% n_features)
# The generator endlessly selects "batch_size" ending positions of sub-time series. For each ending position,
# the "time_to_failure" serves as target, while the features are created by the function "create_X".
def generator(data, min_index=0, max_index=None, batch_size=16, n_steps=150, step_length=1000):
if max_index is None:
max_index = len(data) - 1
while True:
# Pick indices of ending positions
rows = np.random.randint(min_index + n_steps * step_length, max_index, size=batch_size)
# Initialize feature matrices and targets
samples = np.zeros((batch_size, n_steps, n_features))
targets = np.zeros(batch_size, )
for j, row in enumerate(rows):
samples[j] = create_X(data[:, 0], last_index=row, n_steps=n_steps, step_length=step_length)
targets[j] = data[row - 1, 1]
yield samples, targets
batch_size = 64
# Position of second (of 16) earthquake. Used to have a clean split
# between train and validation
second_earthquake = 50085877
float_data[second_earthquake, 1]
# Initialize generators
train_gen = generator(float_data, batch_size=batch_size) # Use this for better score
# train_gen = generator(float_data, batch_size=batch_size, min_index=second_earthquake + 1)
valid_gen = generator(float_data, batch_size=batch_size, max_index=second_earthquake)
# Define model
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import adam
from keras.callbacks import ModelCheckpoint
from keras.models import Model
from keras.callbacks import ModelCheckpoint
from keras.models import Sequential
from keras.layers import Dense, Activation, Flatten
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_absolute_error
from matplotlib import pyplot as plt
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import warnings
model = Sequential()
model.add(Dense(10, activation='relu'))
model.add(Dense(1))
cb = [ModelCheckpoint("model.hdf5", save_best_only=True, period=3)]
# Compile and fit model
model = model.compile(optimizer=adam(lr=0.0005), loss="mae")
history = model.fit_generator(train_gen,
steps_per_epoch=1000,
epochs=30,
verbose=0,
callbacks=cb,
validation_data=valid_gen,
validation_steps=200)
model.summary()
# Visualize accuracies
import matplotlib.pyplot as plt
def perf_plot(history, what = 'loss'):
x = history.history[what]
val_x = history.history['val_' + what]
epochs = np.asarray(history.epoch) + 1
plt.plot(epochs, x, 'bo', label = "Training " + what)
plt.plot(epochs, val_x, 'b', label = "Validation " + what)
plt.title("Training and validation " + what)
plt.xlabel("Epochs")
plt.legend()
plt.show()
return None
perf_plot(history)
# Load submission file
submission = pd.read_csv('sample_submission.csv', index_col='seg_id', dtype={"time_to_failure": np.float32})
# Load each test data, create the feature matrix, get numeric prediction
for i, seg_id in enumerate(tqdm(submission.index)):
# print(i)
seg = pd.read_csv('../test/' + seg_id + '.csv')
x = seg['acoustic_data'].values
submission.time_to_failure[i] = model.predict(np.expand_dims(create_X(x), 0))
submission.head()
# Save
submission.to_csv('submissionearth.csv')
我假设我的请求由1个字节组成,而我的参数由1个字数据组成,但是依次将是3个字节的数据。如何构造此请求?