如何在kafka jdbc connect source中过滤数据库中的表

时间:2019-02-19 06:40:20

标签: mysql apache-kafka mysql-connector apache-kafka-connect

我在Confluent社区平台中使用Kafka Connect来保持MySQL数据库同步。源和接收器是MySQL数据库。没用

我遇到的一些问题:

  1. 同一服务器上其他数据库中有表,我不想将它们读入Kafka,但是Kafka Connect Source一直试图读取其他数据库。

  2. 我想在源连接器和接收器连接器中都使用org.apache.kafka.connect.json.JsonConverter,但是接收器连接器无法正确插入。

  3. 我要同步多个数据库,不同数据库中的表可能具有相同的表名,如何避免表名冲突和接收器连接器 正确地路由Kafka主题以将数据插入正确的数据库? MySQL Synchronization illustration

Kafka JDBC源连接器配置文件为:

{
       "name": "br-auths-3910472223-source",
       "config": {
       "connector.class": "io.confluent.connect.jdbc.JdbcSourceConnector",

       "key.converter": "org.apache.kafka.connect.json.JsonConverter",
       "key.converter.schemas.enable":"true",
       "value.converter": "org.apache.kafka.connect.json.JsonConverter",
"value.converter.schemas.enable":"true",

"tasks.max": "1",
"connection.url": "jdbc:mysql://localhost:3306/br_auths?user=root&password=123456",
"database.whitelist":"br_auths",
"table.blacklist": "br_auths.__migrationversions,br_auths.auths_service_apps",

"mode": "timestamp",
"timestamp.column.name": "utime",
"validate.non.null": "false",

"incrementing.column.name": "id",
"topic.prefix": "br_auths__"
}
}

Kafka JDBC Sink连接器配置文件为:

{
"name": "br-auths-3910472223-sink",
"config": {
    "connector.class": "io.confluent.connect.jdbc.JdbcSinkConnector",

    "key.converter": "org.apache.kafka.connect.json.JsonConverter",
    "key.converter.schemas.enable":"true",
    "value.converter": "org.apache.kafka.connect.json.JsonConverter",
    "value.converter.schemas.enable":"true",

    "tasks.max": "1",
    "connection.url": "jdbc:mysql://rm-hp303a0n2vr8970.mysql.huhehaote.rds.aliyuncs.com:3306/dev-br-auths-391047222?user=br_auths&password=@123456",

    "topics": "br_auths__auths_roles,br_auths__auths_user_logins,br_auths__auths_user_roles,br_auths__auths_users,br_auths__auths_user_claims,br_auths__auths_user_tokens,br_auths__auths_role_claims", 

    "auto.create": "true",
    "insert.mode": "upsert",

    "transforms":"dropTopicPrefix",
    "transforms.dropTopicPrefix.type":"org.apache.kafka.connect.transforms.RegexRouter",
    "transforms.dropTopicPrefix.regex":"br_auths__(.*)",
    "transforms.dropTopicPrefix.replacement":"$1" 
}
}

我想为不同的数据库创建几对源连接器和接收器连接器,MySQL服务器A中的数据库A中的一些白名单表可以与MySQL服务器B中的数据库A逐步同步。

更新1:

我改为使用分布式连接的Debezium源连接器和JDBC Sink连接器。源连接器是:

{
   "name":"br-auths-3910472223-source",
   "config":{
       "connector.class": "io.debezium.connector.mysql.MySqlConnector",
       "tasks.max": "1",
       "database.hostname": "localhost",
       "database.port": "3306",
       "database.user": "root",
       "database.password": "br123456",
       "database.useLegacyDatetimeCode": "false",
       "database.server.id": "184",
       "database.server.name": "local3910472223",
       "database.whitelist":"br_auths",
       "database.history.kafka.bootstrap.servers": "localhost:9092",
       "database.history.kafka.topic": "schema-changes.br-auths.local3910472223" ,
       "table.blacklist": "br_auths.__migrationversions,br_auths.auths_service_apps",
       "include.schema.changes": "true",
       "transforms": "route,TimestampConverter",
       "transforms.TimestampConverter.type": "org.apache.kafka.connect.transforms.TimestampConverter$Value",  
       "transforms.TimestampConverter.target.type": "string", 
       "transforms.TimestampConverter.field": "payload.after.ctime", 
       "transforms.TimestampConverter.format": "yyyy-MM-dd HH:mm:ss",
       "transforms.route.type": "org.apache.kafka.connect.transforms.RegexRouter",
       "transforms.route.regex": "([^.]+)\\.([^.]+)\\.([^.]+)",
       "transforms.route.replacement": "$2__$3"  
    }
} 

接收器连接器为:

{
"name": "br-auths-3910472223-sink",
"config": {
    "connector.class": "io.confluent.connect.jdbc.JdbcSinkConnector",
    "tasks.max": "1",
    "connection.url": "jdbc:mysql://rm-hp303a0n2.mysql.huhehaote.rds.aliyuncs.com:3306/dev-br-auths-391047222?useLegacyDatetimeCode=false&user=br_auths&password=123456",
    "dialect.name": "MySqlDatabaseDialect",
    "topics.regex": "br_auths__(.*)",        
    "transforms": "dropTopicPrefix,unwrap",
    "transforms.dropTopicPrefix.type":"org.apache.kafka.connect.transforms.RegexRouter",
    "transforms.dropTopicPrefix.regex":"br_auths__(.*)",
    "transforms.dropTopicPrefix.replacement":"$1",        
    "transforms.unwrap.type": "io.debezium.transforms.UnwrapFromEnvelope",
    "insert.mode": "upsert",
    "pk.fields": "Id",
    "pk.mode": "record_value"
    }
}

Avro消息像这样转换为json:

{
    "schema": {
        "type": "struct",
        "fields": [
            {
                "type": "struct",
                "fields": [
                    {
                        "type": "string",
                        "optional": false,
                        "field": "Id"
                    },
                    {
                        "type": "string",
                        "optional": false,
                        "field": "UserId"
                    },
                    {
                        "type": "string",
                        "optional": false,
                        "field": "RoleId"
                    },
                    {
                        "type": "string",
                        "optional": true,
                        "field": "APPID"
                    },
                    {
                        "type": "int32",
                        "optional": false,
                        "default": 0,
                        "field": "IsDeleted"
                    },
                    {
                        "type": "int64",
                        "optional": false,
                        "name": "io.debezium.time.Timestamp",
                        "version": 1,
                        "default": 0,
                        "field": "ctime"
                    },
                    {
                        "type": "int64",
                        "optional": false,
                        "name": "io.debezium.time.Timestamp",
                        "version": 1,
                        "default": 0,
                        "field": "utime"
                    }
                ],
                "optional": true,
                "name": "local3910472223.br_auths.auths_user_roles.Value",
                "field": "before"
            },
            {
                "type": "struct",
                "fields": [
                    {
                        "type": "string",
                        "optional": false,
                        "field": "Id"
                    },
                    {
                        "type": "string",
                        "optional": false,
                        "field": "UserId"
                    },
                    {
                        "type": "string",
                        "optional": false,
                        "field": "RoleId"
                    },
                    {
                        "type": "string",
                        "optional": true,
                        "field": "APPID"
                    },
                    {
                        "type": "int32",
                        "optional": false,
                        "default": 0,
                        "field": "IsDeleted"
                    },
                    {
                        "type": "int64",
                        "optional": false,
                        "name": "io.debezium.time.Timestamp",
                        "version": 1,
                        "default": 0,
                        "field": "ctime"
                    },
                    {
                        "type": "int64",
                        "optional": false,
                        "name": "io.debezium.time.Timestamp",
                        "version": 1,
                        "default": 0,
                        "field": "utime"
                    }
                ],
                "optional": true,
                "name": "local3910472223.br_auths.auths_user_roles.Value",
                "field": "after"
            },
            {
                "type": "struct",
                "fields": [
                    {
                        "type": "string",
                        "optional": true,
                        "field": "version"
                    },
                    {
                        "type": "string",
                        "optional": false,
                        "field": "name"
                    },
                    {
                        "type": "int64",
                        "optional": false,
                        "field": "server_id"
                    },
                    {
                        "type": "int64",
                        "optional": false,
                        "field": "ts_sec"
                    },
                    {
                        "type": "string",
                        "optional": true,
                        "field": "gtid"
                    },
                    {
                        "type": "string",
                        "optional": false,
                        "field": "file"
                    },
                    {
                        "type": "int64",
                        "optional": false,
                        "field": "pos"
                    },
                    {
                        "type": "int32",
                        "optional": false,
                        "field": "row"
                    },
                    {
                        "type": "boolean",
                        "optional": true,
                        "default": false,
                        "field": "snapshot"
                    },
                    {
                        "type": "int64",
                        "optional": true,
                        "field": "thread"
                    },
                    {
                        "type": "string",
                        "optional": true,
                        "field": "db"
                    },
                    {
                        "type": "string",
                        "optional": true,
                        "field": "table"
                    },
                    {
                        "type": "string",
                        "optional": true,
                        "field": "query"
                    }
                ],
                "optional": false,
                "name": "io.debezium.connector.mysql.Source",
                "field": "source"
            },
            {
                "type": "string",
                "optional": false,
                "field": "op"
            },
            {
                "type": "int64",
                "optional": true,
                "field": "ts_ms"
            }
        ],
        "optional": false,
        "name": "local3910472223.br_auths.auths_user_roles.Envelope"
    },
    "payload": {
        "before": null,
        "after": {
            "Id": "DB4DA841364860D112C3C76BDCB36635",
            "UserId": "0000000000",
            "RoleId": "5b7e5f9b4bc00d89c4cf96ae",
            "APPID": "br.region2",
            "IsDeleted": 0,
            "ctime": 1550138524000,
            "utime": 1550138524000
        },
        "source": {
            "version": "0.8.3.Final",
            "name": "local3910472223",
            "server_id": 0,
            "ts_sec": 0,
            "gtid": null,
            "file": "mysql-bin.000003",
            "pos": 64606,
            "row": 0,
            "snapshot": true,
            "thread": null,
            "db": "br_auths",
            "table": "auths_user_roles",
            "query": null
        },
        "op": "c",
        "ts_ms": 1550568556614
    }
}

使用MySQL datetime类型的列被序列化为一个大整数,JDBC接收器连接器试图插入MySQL datetime列,但失败。

所以我在源连接配置中写了transforms.TimestampConverter,但是ctime,utime列没有变化。怎么了?

1 个答案:

答案 0 :(得分:0)

  1. 如果要使数据库保持同步,则JDBC Source连接器不是最好的-您想使用适当的基于日志的CDC,对于Debianzium而言,它对于MySQL是可用的。更多详细信息here
  2. 如果您不对数据进行任何其他处理,您是否甚至需要Kafka?专用的MySQL复制工具会更合适吗?
  3. 针对您的具体问题。 This article将解决您的许多问题。特别是:

    1.   

      同一服务器上其他数据库中有表,我不想将它们读入Kafka,但是Kafka Connect Source一直试图读取其他数据库。

      根据需要使用table.whitelisttable.blacklistschema.pattern的组合。如果无法用一个连接器匹配整个图案,则需要使用多个连接器来获得所需的设置。

    2.   

      我想在Source Connector和Sink Connector中都使用org.apache.kafka.connect.json.JsonConverter,但是接收器连接器无法正确插入。

      没有您解释“无法正确插入”的情况,很难回答这个问题。通常,我会使用Avro,因为它具有更丰富的架构支持和更有效的消息(没有嵌入式架构,架构存储在架构注册表中)。有关更多详细信息,请参见here

    3.   

      我想同步多个数据库,不同数据库中的表可能具有相同的表名,如何避免表名冲突以及接收器连接器正确路由Kafka主题以将数据插入正确的数据库中?

      您将需要使用“源”连接器上的topic.prefix组合来标记来自特定源的主题,然后使用“单消息转换RegexRouter”(如您所知)来操作主题在源连接器和/或接收器连接器中进一步命名。您可能需要使用topics.regex的多个接收器连接器来选择特定主题以路由到特定数据库。