如何通过此代码获取到Bowlength的方法?

时间:2019-02-18 22:08:55

标签: c computational-geometry

每行maxX从minY开始,反之亦然 这使得双曲线的一部分可以适合每个交点标记的单个矢量的近似值。 一般如何将这些向量求和以得出弓长?

代码给出了错误的结果-为什么x和y的曲率关系为

#include <stdio.h>
#include <stdlib.h>
double sqrt1(double a);
double powerOfTen(int num);
double func_relDREF();
double _sin(double x);
double _cos(double x);
double _tan(double x);
double func_pow2(double v);
double func_cot(double rad);
int _fact(int a);
int main() {
    double a = 1.0;
    double b = 1.0;
    double phi = 1000;
    double DREF = 2*func_cot(phi/2.0);
    double A = (a*b);
    double res = 2.0*(((sqrt1(func_pow2(2.0*A)+sqrt1(func_pow2(A))))*A)/sqrt1(func_pow2(3.0*A)+(sqrt1(func_pow2(A)))));
    double bow = res * DREF;
    fprintf(stdout, "%f :: %f", res , bow);
    return 0;
}
int _fact (int a)
{
  if (a>1)  // Base case = 1
  {
    return (a * _fact(a-1));   // fact(a-1) is the recursive call in this step to call its own function again
  }

  else    // If the value of the a = 1, then simply return the same
    return 1;
} 
double func_cot(double rad) {
    double res = 0.0;
    res = 1/_tan(rad);
    return res;
}
double _sin(double x) {
    double y = x;
    double s = -1;
    int i = 0;
    for (i=3; i<=10; i+=2) {
        y+=s*(powerOfTen((x,i)/_fact(i)));
        s *= -1;
    }  
    return y;
}
double _cos(double x) {
    double y = 1;
    double s = -1;
    int i = 0;
    for (i=2; i<=10; i+=2) {
        y+=s*(powerOfTen((x,i)/_fact(i)));
        s *= -1;
    }  
    return y;
}
double _tan(double x) {
     return (_sin(x)/_cos(x));  
}
double func_relDREF() {
    return (3.141592653589793 / 2.0) / sqrt1(2.0);
}
double func_pow2(double v) {
    return v*v;
}
double powerOfTen(int num){
     double rst = 1.0;
     int i = 0;
     if(num >= 0){
         for(i = 0; i < num ; i++){
             rst *= 10.0;
         }
     }else{
         for(i = 0; i < (0 - num ); i++){
            rst *= 0.1;
        }
    }

    return rst;
}
double  sqrt1(double a)
 {
     /*
           find more detail of this method on wiki methods_of_computing_square_roots

           *** Babylonian method cannot get exact zero but approximately value of the square_root
      */
      double z = a; 
      double rst = 0.0;
     int max = 8;     // to define maximum digit 
     int i;
     double j = 1.0;
     for(i = max ; i > 0 ; i--){
         // value must be bigger then 0
         if(z - (( 2 * rst ) + ( j * powerOfTen(i)))*( j * powerOfTen(i)) >= 0)
         {
             while( z - (( 2 * rst ) + ( j * powerOfTen(i)))*( j * powerOfTen(i)) >= 0)
             {
                 j++;
                 if(j >= 10) break;

             }
             j--; //correct the extra value by minus one to j
             z -= (( 2 * rst ) + ( j * powerOfTen(i)))*( j * powerOfTen(i)); //find value of z

             rst += j * powerOfTen(i);     // find sum of a

             j = 1.0;


           }

      }

  for(i = 0 ; i >= 0 - max ; i--){
          if(z - (( 2 * rst ) + ( j * powerOfTen(i)))*( j * powerOfTen(i)) >= 0)
          {
              while( z - (( 2 * rst ) + ( j * powerOfTen(i)))*( j * powerOfTen(i)) >= 0)
              {
                  j++;
              }
              j--;
              z -= (( 2 * rst ) + ( j * powerOfTen(i)))*( j * powerOfTen(i)); //find value of z

              rst += j * powerOfTen(i);     // find sum of a
              j = 1.0;
           }
      }
      // find the number on each digit
      return rst;
}

deltaX 1和deltaY 3应该大于sqrt(10)

此代码是另一个试用版,但它也不符合数字现实 请帮忙!

#include <stdio.h>
#include <math.h>

#define LIM_N 3
#define LIM_M 3
#define LIM_E 0.0000001
main() {
    int n = 0;
    int m = 0;
    int d = 0;
    double dim = 0.0;
    double x1 = 0.0;
    double x2 = 0.0;
    double pr = 0.0;
    double res = 0.0;
    if(LIM_M > LIM_N) {
        for(d = 1; pow(10,d) <= LIM_M; d++) {
        }
        dim = pow(10,d - 1);
        for(n = 2, m = 1; n <= (int) LIM_M + 1; n++, m++) {
            x1 = sqrt((sqrt(2.0) / ((double) LIM_M / (double) LIM_N) * sqrt(2.0) / ((double) LIM_M) / (double) LIM_N) + ((double)LIM_E) / 2.0*((double)LIM_E) / 2.0) + (sqrt(2.0) / (double) 2.0);
            res = dim * x1;
        }
        fprintf(stdout, "sqrt(1. %.64lf + %.64lf) = %.64f\n",x1, x2, res);
    }
    if(LIM_M < LIM_N) {
        for(d = 1; pow(10,d) <= LIM_N; d++) {
        }
        dim = pow(10,d - 1);
        for(n = 2, m = 1; n <= (int) LIM_N + 1; n++, m++) {
            x1 = sqrt((sqrt(2.0) / ((double) LIM_N / (double) LIM_M) * sqrt(2.0) / ((double) LIM_N) * (double) LIM_M) + ((double)LIM_E) / 2.0*((double)LIM_E) / 2.0) + (sqrt(2.0) / (double) 2.0);
            x2 = sqrt(sqrt(2.0/(double)LIM_N)*sqrt(2.0/(double)LIM_N))+(LIM_E/(double)LIM_N)*(LIM_E/(double)LIM_N) + (sqrt(2.0)/(double)LIM_M);
            res = dim * x1;
        }
        fprintf(stdout, "sqrt(2. %.64lf + %.64lf) = %.64f\n",x1, x2, res);
    }
    if(LIM_M == LIM_N) {
        for(d = 1; pow(10,d) <= LIM_M; d++) {
        }
        dim = pow(10,d - 1);
        for(n = 2, m = 1; n <= (int) LIM_M + 1; n++, m++) {
            x1 = 0.5*sqrt((sqrt(2.0) / ((double) 1.0) * sqrt(2.0) / ((double) 1.0)) + ((double)LIM_E) / 2.0*((double)LIM_E) / 2.0) + (sqrt(2.0) / (double) 2.0);
            x2 = sqrt(sqrt(2.0/(double)LIM_N)*sqrt(2.0/(double)LIM_N))+(LIM_E/(double)LIM_N)*(LIM_E/(double)LIM_N) + (sqrt(2.0)/(double)LIM_M);
            res = dim*x1;
        }
        fprintf(stdout, "sqrt(3. %.64lf + %.64lf) = %.64f\n",x1, x2, res);
    }
}

好!我想我明白了!看看

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define MAX_STEP 100
#define dltX 1.0
#define dltY 2.0

struct vector {
    double *x;
    double *y;
    double *len;
} vec;
struct index {
    int n;
} idx;
struct result {
    double tmpX;
    double tmpY;
    double sum;
} res;
double func_cLen(int n);
double func_p(int val);
main() {
    vec.x = (double *) malloc(MAX_STEP*sizeof(double));
    vec.y = (double *) malloc(MAX_STEP*sizeof(double));
    vec.len = (double *) malloc(MAX_STEP*sizeof(double));
    res.tmpX = dltX;
    res.tmpY = dltY;
    idx.n = 0;
    for(idx.n = 1; idx.n <= MAX_STEP; idx.n++) {
        vec.len[idx.n - 1] = func_cLen(idx.n);
        res.sum = vec.len[idx.n - 1];
        fprintf(stdout, "%8.16lf _ %8.16lf\n", vec.len[idx.n - 1], res.sum);
    }
    fprintf(stdout, "%8.16lf", res.sum);
    free(vec.x);
    free(vec.y);
    free(vec.len);
}
double func_p(int val) {
    int p = 0;
    for(p = 1; val >= pow(10.0,(double)p); p++) {
        val -= pow(10.0,(double) p);
    }
    return (p - 1);
}
double func_cLen(int n) {
    double r = 0.0;
     if(dltX == dltY) {
        r = (sqrt(dltX*dltX + dltX*dltX) + sqrt(dltX*dltX + dltX*dltX)) / (2.0);
    } else {
        if(dltX > dltY) {
           r = (sqrt(dltX*dltX + dltX*dltX) + sqrt(dltX*dltX + res.tmpY*res.tmpY)) / (2.0);
           res.tmpY = r;
        }
        if(dltX < dltY) {
            r = (sqrt(dltY*dltY + dltY*dltY) + sqrt(dltY*dltY + res.tmpX*res.tmpX)) / (2.0);
            res.tmpX = r;
        }
    }
    return r;
}

好!问题只是在r r pi / 180中,此r的比例为(a + b)/ 2,但我认为不是全部吗?

0 个答案:

没有答案