如何使用多个保存的模型进行预测?

时间:2019-02-17 13:09:26

标签: python python-3.x machine-learning keras

我正在尝试从此笔记本下载的已保存模型中预测分数值

https://www.kaggle.com/paoloripamonti/twitter-sentiment-analysis/

它包含4个保存的模型,即:

  1. encoder.pkl
  2. model.h5
  3. model.w2v
  4. tokenizer.pkl

我正在使用model.h5,我的代码是:

from keras.models import load_model
s_model = load_model('model.h5')

#predict the result
result = model.predict("HI my name is Mansi")

但是无法预测。

我认为错误是因为我必须先对它进行标记化和编码,但是我不知道如何使用多个保存的模型来做到这一点。

任何人都可以指导我如何使用上面笔记本中提到的保存的模型预测值和分数。

1 个答案:

答案 0 :(得分:2)

在输入模型之前,应该先对文本进行预处理,以下是最小的工作脚本(改编自https://www.kaggle.com/paoloripamonti/twitter-sentiment-analysis/):

import time
import pickle
from keras.preprocessing.sequence import pad_sequences
from keras.models import load_model

model = load_model('model.h5')
tokenizer = pickle.load(open('tokenizer.pkl', "rb"))
SEQUENCE_LENGTH = 300
decode_map = {0: "NEGATIVE", 2: "NEUTRAL", 4: "POSITIVE"}

POSITIVE = "POSITIVE"
NEGATIVE = "NEGATIVE"
NEUTRAL = "NEUTRAL"
SENTIMENT_THRESHOLDS = (0.4, 0.7)

def decode_sentiment(score, include_neutral=True):
    if include_neutral:        
        label = NEUTRAL
        if score <= SENTIMENT_THRESHOLDS[0]:
            label = NEGATIVE
        elif score >= SENTIMENT_THRESHOLDS[1]:
            label = POSITIVE

        return label
    else:
        return NEGATIVE if score < 0.5 else POSITIVE

def predict(text, include_neutral=True):
    start_at = time.time()
    # Tokenize text
    x_test = pad_sequences(tokenizer.texts_to_sequences([text]), maxlen=SEQUENCE_LENGTH)
    # Predict
    score = model.predict([x_test])[0]
    # Decode sentiment
    label = decode_sentiment(score, include_neutral=include_neutral)

    return {"label": label, "score": float(score),
       "elapsed_time": time.time()-start_at}  

predict("hello")

测试:

predict("hello")

其输出:

{'elapsed_time': 0.6313169002532959,
 'label': 'POSITIVE',
 'score': 0.9836862683296204}