使用集合中的计数器动态创建词典的总和

时间:2019-02-16 20:41:52

标签: python dictionary collections

我有这个df:

import pandas as pd
a = [1,1,1,2,2,3,3,3,3,4,4,5,5,5]
b = ["pi","pi","k","J","pi","pi","k","k","J","pi","k","pi","k","pi"]
bin0 = [0,0,0,1,0,0,1,0,0,0,1,1,0,0]
bin1 = [1,1,1,0,1,0,0,1,1,0,0,0,1,0]
bin2 = [0,0,0,0,0,1,0,0,0,1,0,0,0,1]

df_test = pd.DataFrame({"a": a, "b": b,"bin0": bin0,"bin1": bin1,"bin2": 
bin2})

赞:

    a   b  bin0  bin1  bin2
0   1  pi     0     1     0
1   1  pi     0     1     0
2   1   k     0     1     0
3   2   J     1     0     0
...
12  5   k     0     1     0
13  5  pi     0     0     1

然后,我想根据此df创建字典,并对具有相同密钥的那些字典求和:

from collections import Counter

thismodule = sys.modules[__name__]

df1 = df_test.groupby(['a', 'b']).agg({'b':'size', 'bin0':'sum', 
'bin1':'sum', 'bin2':'sum'}).rename(columns={'b': 'cant', 'bin0': 'b0', 
'bin1': 'b1', 'bin2': 'b2'}).reset_index(drop = False)


for evt in df1.a.unique():
    name1 = 'dict_'+str(evt)
    name2 = 'col_'+str(evt)
    df_ = df1
    df_ = df_[df_.a==evt].drop('a', 1).set_index('b').to_dict('index')
    setattr(thismodule, name1, df_)
    setattr(thismodule, name2, col_)  

获取,例如:

df_1 = {'k': {'cant': 1, 'b0': 0, 'b1': 1, 'b2': 0}, 'pi': {'cant': 2, 
'b0': 0, 'b1': 2, 'b2': 0}}

col_1 = Counter({'k': {'cant': 1, 'b0': 0, 'b1': 1, 'b2': 0}, 'pi': 
{'cant': 2, 'b0': 1, 'b1': 0, 'b2': 1}})

最后,当我想对具有相同键的字典的值求和时,会出现错误:

col_1 = eval("col_1")
col_2 = eval("col_2")

sumdict = col_1 +col_2
print(sumdict)

错误是:

newcount = count + other[elem]

TypeError: unsupported operand type(s) for +: 'dict' and 'dict'

3 个答案:

答案 0 :(得分:1)

您会在这里进行很多疯狂的事情,我认为这可能是不必要的,并且我强烈建议(evalsetattr),但仅回答有关汇总值的问题。两个带有共享密钥的计数器:

from collections import Counter
cx = Counter(x)
cy = Counter(y)

totals = {k:cx.get(k,0) + cy.get(k,0) for k in (set(cx) | set(cy))}
print(totals)

您将两个字典键的并集进行迭代,然后对其进行迭代,然后使用Counter.get(key, default)方法获取关联键的值,并提供一个不存在的后备默认值。

这是字典理解,但您也可以这样做:

for k in (set(cx) | set(cy)):
    total = cx.get(k,0) + cy.get(k,0)
    print(k, total)

例如,使用使用以下数据构建的数据:

from random import choice
x = [choice("abcdefg") for _ in range(100)]
y = [choice("abcdefg") for _ in range(100)]
y.extend(["z"] * 3)

答案 1 :(得分:1)

这不是您想要实现的目标吗?

df_test.groupby(['a', 'b']).sum().reset_index().groupby('a').sum()

    bin0    bin1    bin2
a           
1   0   3   0
2   1   1   0
3   1   2   1
4   1   0   1
5   1   1   1

答案 2 :(得分:0)

尝试使用dict的update()方法 https://www.tutorialspoint.com/python/dictionary_update.htm

count.update(other [elem])