我当前正在运行test_matrix_speed()
,以查看我的search_and_book_availability
函数有多快。使用PyCharm分析器,我可以看到每个search_and_book_availability
函数调用的平均速度为0.001ms。使用Numba @jit(nopython=True)
装饰器对该函数的性能没有影响。这是因为没有可改进的地方,并且Numpy在这里运行得尽可能快吗? (我不在乎generate_searches
函数的速度)
这是我正在运行的代码
import random
import numpy as np
from numba import jit
def generate_searches(number, sim_start, sim_end):
searches = []
for i in range(number):
start_slot = random.randint(sim_start, sim_end - 1)
end_slot = random.randint(start_slot + 1, sim_end)
searches.append((start_slot, end_slot))
return searches
@jit(nopython=True)
def search_and_book_availability(matrix, search_start, search_end):
search_slice = matrix[:, search_start:search_end]
output = np.where(np.sum(search_slice, axis=1) == 0)[0]
number_of_bookable_vecs = output.size
if number_of_bookable_vecs > 0:
if number_of_bookable_vecs == 1:
id_to_book = output[0]
else:
id_to_book = np.random.choice(output)
matrix[id_to_book, search_start:search_end] = 1
return True
else:
return False
def test_matrix_speed():
shape = (10, 1440)
matrix = np.zeros(shape)
sim_start = 0
sim_end = 1440
searches = generate_searches(1000000, sim_start, sim_end)
for i in searches:
search_start = i[0]
search_end = i[1]
availability = search_and_book_availability(matrix, search_start, search_end)
答案 0 :(得分:1)
使用您的函数和以下代码来分析速度
import time
shape = (10, 1440)
matrix = np.zeros(shape)
sim_start = 0
sim_end = 1440
searches = generate_searches(1000000, sim_start, sim_end)
def reset():
matrix[:] = 0
def test_matrix_speed():
for i in searches:
search_start = i[0]
search_end = i[1]
availability = search_and_book_availability(matrix, search_start, search_end)
def timeit(func):
# warmup
reset()
func()
reset()
start = time.time()
func()
end = time.time()
return end - start
print(timeit(test_matrix_speed))
我发现jit
的版本大约是11.5s,而没有jit
的版本大约是7.5s。我不是numba的专家,但是它的目的是优化以非向量化方式(尤其是显式for
循环)编写的数字代码。在您的代码中没有,您仅使用向量化操作。因此,我希望jit
不会跑赢基准解决方案,尽管我必须承认令我感到惊讶的是,情况如此糟糕。如果您想优化解决方案,可以使用以下代码减少执行时间(至少在我的PC上):
def search_and_book_availability_opt(matrix, search_start, search_end):
search_slice = matrix[:, search_start:search_end]
# we don't need to sum in order to check if all elements are 0.
# ndarray.any() can use short-circuiting and is therefore faster.
# Also, we don't need the selected values from np.where, only the
# indexes, so np.nonzero is faster
bookable, = np.nonzero(~search_slice.any(axis=1))
# short circuit
if bookable.size == 0:
return False
# we can perform random choice even if size is 1
id_to_book = np.random.choice(bookable)
matrix[id_to_book, search_start:search_end] = 1
return True
,然后将matrix
初始化为np.zeros(shape, dtype=np.bool)
,而不是默认的float64
。我能够执行大约3.8s的执行时间,比您未绑定的解决方案节省了约50%,比您的未绑定解决方案节省了约70%。希望有帮助。