包含单词列表的列的单词分数总和

时间:2019-02-14 17:24:12

标签: python string pandas dataframe

我有一个单词栏:

> print(df['words'])
0       [awww, thats, bummer, shoulda, got, david, car...   
1       [upset, that, he, cant, update, his, facebook,...   
2       [dived, many, time, ball, managed, save, rest,...   
3       [whole, body, feel, itchy, like, it, on, fire]   
4       [no, it, not, behaving, at, all, im, mad, why,...   
5       [not, whole, crew]

和每个词的“情感”值的另一个情感栏:

> print(sentiment) 
           abandon  -2
0        abandoned  -2
1         abandons  -2
2         abducted  -2
3        abduction  -2
4       abductions  -2
5            abhor  -3
6         abhorred  -3
7        abhorrent  -3
8           abhors  -3
9        abilities   2
...

对于df['words']中的每一行单词,我想总结它们各自的情感价值。对于情绪中不存在的单词,请等于0。

这是我到目前为止所拥有的:

df['sentiment_value'] = Sum(df['words'].apply(lambda x: ''.join(x+x for x in sentiment))

预期结果

print(df['sentiment_value'])
0        -5   
1         2   
2        15  
3        -6   
4        -8   
...

2 个答案:

答案 0 :(得分:0)

如果第二列的字符串中有值,那么您需要先通过转换来过滤数据 分为两列

SUM(myvalue::bigint)

然后您可以从“情感”列中找到情感索引,并从“情感_值”列中获取价值

答案 1 :(得分:0)

如果您将分数设为系列,将单词作为标签:

In [11]: s  # e.g. sentiment.set_index("word")["score"]
Out[11]:
abandon     -2
abandoned   -2
abandons    -2
abducted    -2
abduction   -2
Name: score, dtype: int64

然后您可以查看列表的分数:

In [12]: s.loc[["abandon", "abducted"]].sum()
Out[12]: -4

因此适用条件为:

df['words'].apply(lambda ls: s.loc[ls])

如果您需要支持缺少的单词(不在s中),则可以使用reindex:

In [21]: s.reindex(["abandon", "abducted", "missing_word"]).sum()
Out[21]: -4.0

df['words'].apply(lambda ls: s.reindex(ls))