没有2和3的倍数的Eratosthenes筛子

时间:2019-02-13 23:44:52

标签: python math primes sieve-of-eratosthenes sieve

我正在尝试实现本文Faster Sieve of Eratosthenes中描述的算法。我很了解这个主意,但是我无法把握如何通过python代码实现它。

经过一些工作,我找到了一种将筛子的索引转换为数字本身的方法:

number = lambda i: 3 * (i + 2) - 1 - (i + 2) % 2

但是主要的问题是我在获得质素后必须做的跳动作。文章将其解释为:

  

6np±p,其中p是素数,n是一些自然数。

是否有一种方法可以使用这种想法的最后找到的质数来描述跳跃?

谢谢。

P.S。 有implementation in Objective-C 我对编程很陌生,只能理解python和js代码。

1 个答案:

答案 0 :(得分:0)

如果您既了解numpy又了解Python,请查看this answer in StackOverflow中的primesfrom2to的实现。

def primesfrom2to(n):
    # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Input n>=6, Returns a array of primes, 2 <= p < n """
    sieve = np.ones(n/3 + (n%6==2), dtype=np.bool)
    sieve[0] = False
    for i in xrange(int(n**0.5)/3+1):
        if sieve[i]:
            k=3*i+1|1
            sieve[      ((k*k)/3)      ::2*k] = False
            sieve[(k*k+4*k-2*k*(i&1))/3::2*k] = False
    return np.r_[2,3,((3*np.nonzero(sieve)[0]+1)|1)]

在我链接的答案中,此例程是建立素数列表最快的例程。我在探索素数的代码中使用了它的变体。对此进行详细解释会占用很多空间,但是它会构建一个sieve,其中省略了2和3的倍数。仅两行代码(以sieve[开始和以= False结尾的代码)标出新发现的素数的倍数。我认为这就是您所说的“在获得质素后跳...”的意思。该代码很棘手,但正在研究中。该代码适用于Python 2,旧版Python。

这是我自己的一些带有更多注释的Python 3代码。您可以使用它进行比较。

def primesieve3rd(n):
    """Return 'a third of a prime sieve' for values less than n that
    are in the form 6k-1 or 6k+1.

    RETURN: A numpy boolean array. A True value means the associated
            number is prime; False means 1 or composite.

    NOTES:  1.  If j is in that form then the index for its primality
                test is j // 3.
            2.  The numbers 2 and 3 are not handled in the sieve.
            3.  This code is based on primesfrom2to in
                <https://stackoverflow.com/questions/2068372/
                fastest-way-to-list-all-primes-below-n-in-python/
                3035188#3035188>
    """
    if n <= 1:  # values returning an empty array
        return np.ones(0, dtype=np.bool_)
    sieve = np.ones(n // 3 + (n % 6 == 2), dtype=np.bool_)  # all True
    sieve[0] = False   # note 1 is not prime
    for i in range(1, (math.ceil(math.sqrt(n)) + 1) // 3): # sometimes large
        if sieve[i]:
            k = 3 * i + 1 | 1  # the associated number for this cell
            # Mark some of the stored multiples of the number as composite
            sieve[k * k                 // 3 :: 2 * k] = False
            # Mark the remaining stored multiples (k times next possible prime)
            sieve[k * (k + 4 - 2*(i&1)) // 3 :: 2 * k] = False
    return sieve

def primesfrom2to(n, sieve=None):
    """Return an array of prime numbers less than n.

    RETURN: A numpty int64 (indices type) array.

    NOTES:  1.  This code is based on primesfrom2to in
                <https://stackoverflow.com/questions/2068372/
                fastest-way-to-list-all-primes-below-n-in-python/
                3035188#3035188>
    """
    if n <= 5:
        return np.array([2, 3], dtype=np.intp)[:max(n - 2, 0)]
    if sieve is None:
        sieve = primesieve3rd(n)
    elif n >= 3 * len(sieve) + 1 | 1:  # the next number to note in the sieve
        raise ValueError('Number out of range of the sieve in '
                         'primesfrom2to')
    return np.r_[2, 3, 3 * np.nonzero(sieve)[0] + 1 | 1]

问我这里是否有您不理解的东西。