Dask客户端无法连接到dasch-scheduler

时间:2019-02-13 19:51:27

标签: python-3.x ssl-certificate dask-distributed

我正在使用dask 1.1.1(最新版本),并使用以下命令在命令行中启动了dask调度程序:

$ dask-scheduler --port 9796 --bokeh-port 9797 --bokeh-prefix my_project
distributed.scheduler - INFO - -----------------------------------------------
distributed.scheduler - INFO - Clear task state
distributed.scheduler - INFO -   Scheduler at:     tcp://10.1.0.107:9796
distributed.scheduler - INFO -       bokeh at:                     :9797
distributed.scheduler - INFO - Local Directory:    /tmp/scheduler-pdnwslep
distributed.scheduler - INFO - -----------------------------------------------
distributed.scheduler - INFO - Register tcp://10.1.25.4:36310
distributed.scheduler - INFO - Starting worker compute stream, tcp://10.1.25.4:36310
distributed.core - INFO - Starting established connection

然后...我试图使用以下代码启动客户端以连接到调度程序:

from dask.distributed import Client
c = Client('10.1.0.107:9796', set_as_default=False)

但是尝试这样做时,出现错误:

...
 File "/root/anaconda3/lib/python3.7/site-packages/tornado/concurrent.py", line 238, in result
  raise_exc_info(self._exc_info)
 File "<string>", line 4, in raise_exc_info
 tornado.gen.TimeoutError: Timeout
During handling of the above exception, another exception occurred:
...
 File "/root/anaconda3/lib/python3.7/site-packages/distributed/comm/core.py", line 195, in _raise
raise IOError(msg)
OSError: Timed out trying to connect to 'tcp://10.1.0.107:9796' after 10 s: connect() didn't finish in time

这已经在已经运行了几个月的系统中进行了硬编码。所以我只是写这个问题来验证我没有以编程方式做错什么对吗?我认为环境一定有问题。一切对您来说都合适吗?在dask和python之外,什么样的事情可以阻止这种情况?证书?不同版本的软件包?想法

1 个答案:

答案 0 :(得分:1)

(查看相关评论)

dask 的包装器,主要用于在我们的特定配置中进行烘焙,并使其易于在我们的系统中使用 docker 容器:

''' daskwrapper: easy access to distributed computing '''
import webbrowser
from dask.distributed import Client as DaskClient
from . import config

scheduler_config = { # from yaml
    "scheduler_hostname": "schedulermachine.corpdomain.com"
    "scheduler_ip": "10.0.0.1"}
worker_config = { # from yaml
    "environments": {
        "generic": {
            "scheduler_port": 9796,
            "dashboard_port": 9797,
            "worker_port": 67176}}}

class Client():

    def __init__(self, environment: str):
        (
            self.scheduler_hostname,
            self.scheduler_port,
            self.dashboard_port,
            self.scheduler_address) = self.get_scheduler_details(environment)
        self.client = DaskClient(self.scheduler_address, asynchronous=False)

    def get_scheduler_details(self, environment: str) -> tuple:
        ''' gets it from a map of availble docker images... '''
        envs = worker_config['environments']
        return (
            scheduler_config['scheduler_hostname'],
            envs[environment]['scheduler_port'],
            envs[environment]['dashboard_port'],
            (
                f"{scheduler_config['scheduler_hostname']}:"
                f"{str(envs[environment]['scheduler_port'])}"))

    def open_status(self):
        webbrowser.open_new_tab(self.get_status())

    def get_status(self):
        return f'http://{self.scheduler_hostname}:{self.dashboard_port}/status'

    def get_async_client(self):
        ''' returns a client instance so the user can use it directly '''
        return DaskClient(self.scheduler_address, asynchronous=True)

    def get(self, workflow: dict, tasks: 'str|list'):
        return self.client.get(workflow, tasks)

    async def submit(self, function: callable, args: list):
        ''' saved as example dask api '''
        if not isinstance(args, list) and not isinstance(args, tuple):
            args = [args]
        async with DaskClient(self.scheduler_address, asynchronous=True) as client:
            future = client.submit(function, *args)
            result = await future
        return result

    def close(self):
        return self.client.close()

那是客户端,它是这样使用的:

from daskwrapper import Client
dag = {'some_task': (some_task_function, )}
workers = Client(environment='some_environment')
workers.get(workflow=dag, tasks='some_task')
workers.close()

调度程序是这样启动的:

def start():
    def start_scheduler(port, dashboard_port):
        async def f():
            s = Scheduler(
                port=port,
                dashboard_address=f"0.0.0.0:{dashboard_port}")
            s = await s
            await s.finished()

        asyncio.get_event_loop().run_until_complete(f())

    worker_config = configs.get(repo='spartan_worker')
    envs = worker_config['environments']
    for key, value in envs.items():
        port = value['scheduler_port']
        dashboard_port = str(value['dashboard_port'])
        thread = Thread(
            target=start_scheduler,
            args=(port, dashboard_port))
        thread.start()

和工人:

def start(
    scheduler_address: str,
    scheduler_port: int,
    worker_address: str,
    worker_port: int
):
    async def f(scheduler_address):
        w = await Worker(
            scheduler_address,
            port=worker_port,
            contact_address=f'{worker_address}:{worker_port}')
        await w.finished()

    asyncio.get_event_loop().run_until_complete(f(
        f'tcp://{scheduler_address}:{str(scheduler_port)}'))

这可能不会直接帮助你解决这个问题,但我相信自从我们对它进行 dockerized 之后,我们不再有那个问题了。这里有很多缺失,但这是基础知识,并且可能有更好的方法在分布式计算上获得专门的环境以方便使用,但这符合我们的需求。