我有一个如下所示的数据框
df = pd.DataFrame({
"Junk":list("aaaaaabbbcccc"),
"Region":['West','West','West','West','East','East','East','South','South','South','North','North','North'],
"Sales":[1, 3, 4, 2, 4, 2, 5, 7, 9, 7, 5, 9, 5]
})
+------+--------+-------+
| Junk | Region | Sales |
+------+--------+-------+
| a | West | 1 |
| a | West | 3 |
| a | West | 4 |
| a | West | 2 |
| a | East | 4 |
| a | East | 2 |
| b | East | 5 |
| b | South | 7 |
| b | South | 9 |
| c | South | 7 |
| c | North | 5 |
| c | North | 9 |
| c | North | 5 |
+------+--------+-------+
我想做两件事
我可以使用以下代码实现
df.sort_values(by = ['Region','Sales'])
+------+--------+-------+
| Junk | Region | Sales |
+------+--------+-------+
| a | East | 2 |
| a | East | 4 |
| b | East | 5 |
| c | North | 5 |
| c | North | 5 |
| c | North | 9 |
| b | South | 7 |
| c | South | 7 |
| b | South | 9 |
| a | West | 1 |
| a | West | 2 |
| a | West | 3 |
| a | West | 4 |
+------+--------+-------+
但是我想保留Region
列的顺序。首先应该是West
,然后是East
,然后是South
,然后是North
所需的输出
+--------+----------+---------+
| Junk | Region | Sales |
+--------+----------+---------+
| a | West | 1 |
| a | West | 2 |
| a | West | 3 |
| a | West | 4 |
| a | East | 2 |
| a | East | 4 |
| b | East | 5 |
| b | South | 7 |
| c | South | 7 |
| b | South | 9 |
| c | North | 5 |
| c | North | 5 |
| c | North | 9 |
+--------+----------+---------+
Region = East
和Region = North
进行排序所需的输出:
+--------+----------+---------+
| Junk | Region | Sales |
+--------+----------+---------+
| a | West | 1 |
| a | West | 3 |
| a | West | 4 |
| a | West | 2 |
| a | East | 2 |
| a | East | 4 |
| b | East | 5 |
| b | South | 7 |
| b | South | 9 |
| c | South | 7 |
| c | North | 5 |
| c | North | 5 |
| c | North | 9 |
+--------+----------+---------+
答案 0 :(得分:5)
首先创建ordered categorical列,然后进行排序:
order = ['West', 'East', 'South', 'North']
df['Region'] = pd.CategoricalIndex(df['Region'], ordered=True, categories=order)
df = df.sort_values(by = ['Region','Sales'])
print (df)
Junk Region Sales
0 a West 1
3 a West 2
1 a West 3
2 a West 4
5 a East 2
4 a East 4
6 b East 5
7 b South 7
9 c South 7
8 b South 9
10 c North 5
12 c North 5
11 c North 9
使用字典创建map
的解决方案,并创建新列,订购并删除助手列:
order = {'West':1, 'East':2, 'South':3, 'North':4}
df = df.assign(tmp=df['Region'].map(order)).sort_values(by = ['tmp','Sales']).drop('tmp', 1)
print (df)
Junk Region Sales
6 a West 1
0 a West 2
7 a West 3
8 a West 4
2 a East 2
1 a East 4
3 b East 5
4 b South 7
9 c South 7
5 b South 9
10 c North 5
12 c North 5
11 c North 9
第二步是必须按过滤后的行排序,但要分配numpy数组以防止数据对齐:
order = ['West', 'East', 'South', 'North']
df['Region'] = pd.CategoricalIndex(df['Region'], ordered=True, categories=order)
mask = df['Region'].isin(['North', 'East'])
df[mask] = df[mask].sort_values(['Region','Sales']).values
print (df)
Junk Region Sales
0 a West 1
1 a West 3
2 a West 4
3 a West 2
4 a East 2
5 a East 4
6 b East 5
7 b South 7
8 b South 9
9 c South 7
10 c North 5
11 c North 5
12 c North 9
map
替代:
order = {'East':1, 'North':2}
df = df.assign(tmp=df['Region'].map(order))
mask = df['Region'].isin(['North', 'East'])
df[mask] = df[mask].sort_values(['tmp','Sales']).values
df = df.drop('tmp', axis=1)
答案 1 :(得分:2)
您可以使用groupby
并利用sort
参数。然后在有条件的情况下使用apply
和sort_values
:
sort_regions = ['North', 'East']
df.groupby('Region', sort=False).apply(
lambda x: x.sort_values('Sales')
if x['Region'].iloc[0] in sort_regions
else x
).reset_index(drop=True)
输出:
Junk Region Sales
0 a West 1
1 a West 3
2 a West 4
3 a West 2
4 a East 2
5 a East 4
6 b East 5
7 b South 7
8 b South 9
9 c South 7
10 c North 5
11 c North 5
12 c North 9
答案 2 :(得分:1)
在west
,east
,south
和north
之间建立到0、1、2、3的映射
>>> my_order = ['West','East','South','North']
>>> order = {key: i for i, key in enumerate(my_order)}
>>> order
{'West': 0, 'East': 1, 'South': 2, 'North': 3}
并使用映射对键进行排序:
>>> df.iloc[df['Region'].map(order).sort_values().index]