对torch.nn.Sequential感到困惑

时间:2019-02-13 04:06:53

标签: python pytorch

假设我们要在另一个模型(例如VGG16)的分类器的末尾添加一个新层,例如一个线性层,为什么这两种实现确实导致不同的结果?更具体地说,我不明白为什么第一个实现会产生2个分类器:

vgg = torchvision.models.vgg16(pretrained=True)
vgg.classifer=nn.Sequential(vgg.classifier, nn.Linear(4096,300))
print(vgg)

输出:

    VGG(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU(inplace)
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU(inplace)
    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (6): ReLU(inplace)
    (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (8): ReLU(inplace)
    (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace)
    (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (13): ReLU(inplace)
    (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (15): ReLU(inplace)
    (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (18): ReLU(inplace)
    (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (20): ReLU(inplace)
    (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (22): ReLU(inplace)
    (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (25): ReLU(inplace)
    (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (27): ReLU(inplace)
    (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (29): ReLU(inplace)
    (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (classifier): Sequential(
    (0): Linear(in_features=25088, out_features=4096, bias=True)
    (1): ReLU(inplace)
    (2): Dropout(p=0.5)
    (3): Linear(in_features=4096, out_features=4096, bias=True)
    (4): ReLU(inplace)
    (5): Dropout(p=0.5)
    (6): Linear(in_features=4096, out_features=1000, bias=True)
  )
  (classifer): Sequential(
    (0): Sequential(
      (0): Linear(in_features=25088, out_features=4096, bias=True)
      (1): ReLU(inplace)
      (2): Dropout(p=0.5)
      (3): Linear(in_features=4096, out_features=4096, bias=True)
      (4): ReLU(inplace)
      (5): Dropout(p=0.5)
      (6): Linear(in_features=4096, out_features=1000, bias=True)
    )
    (1): Linear(in_features=4096, out_features=300, bias=True)
  )
)

实现2:

vgg = models.vgg16(pretrained=True)
vgg=nn.Sequential(vgg, nn.Linear(4096,300))
print(vgg)

输出:

Sequential(
  (0): VGG(
    (features): Sequential(
      (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (1): ReLU(inplace)
      (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (3): ReLU(inplace)
      (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
      (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (6): ReLU(inplace)
      (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (8): ReLU(inplace)
      (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
      (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (11): ReLU(inplace)
      (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (13): ReLU(inplace)
      (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (15): ReLU(inplace)
      (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
      (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (18): ReLU(inplace)
      (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (20): ReLU(inplace)
      (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (22): ReLU(inplace)
      (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
      (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (25): ReLU(inplace)
      (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (27): ReLU(inplace)
      (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
      (29): ReLU(inplace)
      (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    )
    (classifier): Sequential(
      (0): Linear(in_features=25088, out_features=4096, bias=True)
      (1): ReLU(inplace)
      (2): Dropout(p=0.5)
      (3): Linear(in_features=4096, out_features=4096, bias=True)
      (4): ReLU(inplace)
      (5): Dropout(p=0.5)
      (6): Linear(in_features=4096, out_features=1000, bias=True)
    )
  )
  (1): Linear(in_features=4096, out_features=300, bias=True)
)

1 个答案:

答案 0 :(得分:1)

这是因为您在分类符的拼写上存在语法错误。您已将其写为

vgg.classifer=nn.Sequential(vgg.classifier, nn.Linear(4096,300))

请注意LHS上if之后缺少的classifier。因此,您无意间在此行中创建了一组名为classifer的新图层。


更正后:

vgg.classifier=nn.Sequential(vgg.classifier, nn.Linear(4096,300))

此外,在第一个示例中,您要用具有原始vgg的classifier部分和classifier层的顺序网络替换现有的Linear 作为最后一层。

在第二个示例中,您将使用新的顺序网络重新创建变量vgg ,该顺序网络包含原始vgg网络,最后添加了Linear层层。

vgg=nn.Sequential(vgg, nn.Linear(4096,300))

请注意以上两者之间的区别。