我正在尝试使用tensorflow-gpu训练LSTM网络来进行序列到序列的任务,并且没有其他像keras这样的库。每当开始训练过程时,我都会遇到这个烦人的错误。
Blas GEMM启动失败:a.shape =(128,532),b.shape =(532,1024),m = 128,n = 1024,k = 532 [[{{node rnn / while / gru_cell / MatMul}} = MatMul [T = DT_FLOAT,transpose_a = false,transpose_b = false,_device =“ / job:localhost /副本:0 / task:0 / device:GPU:0 “](rnn / while / gru_cell / concat,rnn / while / gru_cell / MatMul / Enter)]] [[{{节点解码/解码器/ while / Switch_6 / _83}} = _Recvclient_terminated = false,recv_device =“ / job:localhost /副本:0 / task:0 / device:CPU:0”,send_device =“ / job:本地主机/副本:0 /任务:0 /设备:GPU:0“,send_device_incarnation = 1,tensor_name =” edge_1731_decode / decoder / while / Switch_6“,tensor_type = DT_BOOL,_device =” / job:本地主机/副本:0 /任务:0 /设备:CPU:0“]]
我用Google搜索解决方案,发现可能还有其他python进程在后台运行,但是运行命令nvidia-smi没有提供任何迹象。