我正尝试生成根据预定义的概率分布采样的随机布尔掩码。概率分布存储在与最终蒙版具有相同形状的张量中。每个条目都包含该掩码在该特定位置为真的概率。
简而言之,我正在寻找一个需要4个输入的函数:
并返回 n 个布尔掩码
使用numpy进行简化的方式如下:
def sample_mask(pdf, s, replace):
hight, width = pdf.shape
# Flatten to 1 dimension
pdf = np.resize(pdf, (hight*width))
# Sample according to pdf, the result is an array of indices
samples=np.random.choice(np.arange(hight*width),
size=s, replace=replace, p=pdf)
mask = np.zeros(hight*width)
# Apply indices to mask
for s in samples:
mask[s]=1
# Resize back to the original shape
mask = np.resize(mask, (hight, width))
return mask
我已经弄清楚,没有replace参数的采样部分可以这样完成:
samples = tf.multinomial(tf.log(pdf_tensor), n)
但是在将样本转换为蒙版时,我还是很困惑。
答案 0 :(得分:0)
我一定在睡觉,这是我的解决方法:
def sample_mask(pdf, s, n, replace):
"""Initialize the model.
Args:
pdf: A 3D Tensor of shape (batch_size, hight, width, channels=1) to use as a PDF
s: The number of samples per mask. This value should be less than hight*width
n: The total number of masks to generate
replace: A boolean indicating if sampling should be done with replacement
Returns:
A Tensor of shape (batch_size, hight, width, channels=1, n) containing
values 1 or 0.
"""
batch_size, hight, width, channels = pdf.shape
# Flatten pdf
pdf = tf.reshape(pdf, (batch_size, hight*width))
if replace:
# Sample with replacement. Output is a tensor of shape (batch_size, n)
sample_fun = lambda: tf.multinomial(tf.log(pdf), s)
else:
# Sample without replacement. Output is a tensor of shape (batch_size, n).
# Cast the output to 'int64' to match the type needed for SparseTensor's indices
sample_fun = lambda: tf.cast(sample_without_replacement(tf.log(pdf), s), dtype='int64')
# Create batch indices
idx = tf.range(batch_size, dtype='int64')
idx = tf.expand_dims(idx, 1)
# Transform idx to a 2D tensor of shape (batch_size, samples_per_batch)
# Example: [[0 0 0 0 0],[1 1 1 1 1],[2 2 2 2 2]]
idx = tf.tile(idx, [1, s])
mask_list = []
for i in range(n):
# Generate samples
samples = sample_fun()
# Combine batch indices and samples
samples = tf.stack([idx,samples])
# Transform samples to a list of indicies: (batch_index, sample_index)
sample_indices = tf.transpose(tf.reshape(samples, [2, -1]))
# Create the mask as a sparse tensor and set sampled indices to 1
mask = tf.SparseTensor(indices=sample_indices, values=tf.ones(s*batch_size), dense_shape=[batch_size, hight*width])
# Convert mask to a dense tensor. Non-sampled values are set to 0.
# Don't validate the indices, since this requires indices to be ordered
# and unique.
mask = tf.sparse.to_dense(mask, default_value=0,validate_indices=False)
# Reshape to input shape and append to list of tensors
mask_list.append(tf.reshape(mask, [batch_size, hight, width, channels]))
# Combine all masks into a tensor of shape:
# (batch_size, hight, width, channels=1, number_of_masks)
return tf.stack(mask_list, axis=-1)
此处建议的无替换采样功能:https://github.com/tensorflow/tensorflow/issues/9260#issuecomment-437875125
它使用Gumble-max技巧:https://timvieira.github.io/blog/post/2014/07/31/gumbel-max-trick/
def sample_without_replacement(logits, K):
z = -tf.log(-tf.log(tf.random_uniform(tf.shape(logits),0,1)))
_, indices = tf.nn.top_k(logits + z, K)
return indices