SASData对象具有to_csv
和to_df_CSV
方法,但是这两个方法均写入主机上运行SAS会话的位置。是否可以通过远程连接将大型SAS数据表写入本地计算机上的.CSV?随意的Github页面上的选项是通过to_df
获取DataFrame,然后将其写入.CSV,但这在我的情况下不起作用,因为SAS表大于内存。我必须分块读写吗?
答案 0 :(得分:1)
这是我所建议的例子。
tom64-3> python3.5
Python 3.5.5 (default, Feb 6 2018, 10:56:47)
[GCC 4.4.7 20120313 (Red Hat 4.4.7-18)] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import saspy
>>> sas = saspy.SASsession(cfgname='iomjwin')
SAS Connection established. Subprocess id is 3681
No encoding value provided. Will try to determine the correct encoding.
Setting encoding to cp1252 based upon the SAS session encoding value of wlatin1.
>>> sas
Access Method = IOM
SAS Config name = iomjwin
WORK Path = C:\Users\sastpw\AppData\Local\Temp\SAS Temporary Files\_TD20052_d10a626_\Prc4\
SAS Version = 9.04.01M4P11142016
SASPy Version = 2.4.3
Teach me SAS = False
Batch = False
Results = Pandas
SAS Session Encoding = wlatin1
Python Encoding value = cp1252
SAS process Pid value = 20052
>>> cars = sas.sasdata('cars', 'sashelp')
>>> cars.head()
Make Model Type Origin DriveTrain MSRP Invoice EngineSize \
0 Acura MDX SUV Asia All 36945 33337 3.5
1 Acura RSX Type S 2dr Sedan Asia Front 23820 21761 2.0
2 Acura TSX 4dr Sedan Asia Front 26990 24647 2.4
3 Acura TL 4dr Sedan Asia Front 33195 30299 3.2
4 Acura 3.5 RL 4dr Sedan Asia Front 43755 39014 3.5
Cylinders Horsepower MPG_City MPG_Highway Weight Wheelbase Length
0 6 265 17 23 4451 106 189
1 4 200 24 31 2778 101 172
2 4 200 22 29 3230 105 183
3 6 270 20 28 3575 108 186
4 6 225 18 24 3880 115 197
>>> cars.to_csv(sas.workpath+'\cars.csv')
11 The SAS System 11:15 Tuesday, February 19, 2019
99
100 options nosource;
NOTE: The file X is:
Filename=C:\Users\sastpw\AppData\Local\Temp\SAS Temporary Files\_TD20052_d10a626_\Prc4\cars.csv,
RECFM=V,LRECL=32767,File Size (bytes)=0,
Last Modified=19Feb2019:11:16:58,
Create Time=19Feb2019:11:16:58
NOTE: 429 records were written to the file X.
The minimum record length was 68.
The maximum record length was 123.
NOTE: There were 428 observations read from the data set SASHELP.CARS.
NOTE: DATA statement used (Total process time):
real time 0.02 seconds
cpu time 0.00 seconds
428 records created in X from SASHELP.CARS.
NOTE: "X" file was successfully created.
NOTE: PROCEDURE EXPORT used (Total process time):
real time 1.49 seconds
cpu time 0.21 seconds
>>> res = sas.download('/u/sastpw', r'C:\Users\sastpw\AppData\Local\Temp\SAS Temporary Files\_TD20052_d10a626_\Prc4\cars.csv')
>>> print(res['LOG'])
19 The SAS System 11:15 Tuesday, February 19, 2019
278
279 filename _sp_updn 'C:\Users\sastpw\AppData\Local\Temp\SAS Temporary Files\_TD20052_d10a626_\Prc4\cars.csv' recfm=F encoding=binary lrecl=4096
280
281
20 The SAS System 11:15 Tuesday, February 19, 2019
284
21 The SAS System 11:15 Tuesday, February 19, 2019
287
288 filename _sp_updn;
NOTE: Fileref _SP_UPDN has been deassigned.
289
290
>>>
SAS Connection terminated. Subprocess id was 3681
tom64-3> ll /u/sastpw/cars.csv
-rw-r--r-- 1 sastpw r&d 38142 Feb 19 11:18 /u/sastpw/cars.csv
tom64-3>
tom64-3> head /u/sastpw/cars.csv
Make,Model,Type,Origin,DriveTrain,MSRP,Invoice,EngineSize,Cylinders,Horsepower,MPG_City,MPG_Highway,Weight,Wheelbase,Length
Acura,MDX,SUV,Asia,All,"$36,945","$33,337",3.5,6,265,17,23,4451,106,189
Acura,RSX Type S 2dr,Sedan,Asia,Front,"$23,820","$21,761",2,4,200,24,31,2778,101,172
Acura,TSX 4dr,Sedan,Asia,Front,"$26,990","$24,647",2.4,4,200,22,29,3230,105,183
Acura,TL 4dr,Sedan,Asia,Front,"$33,195","$30,299",3.2,6,270,20,28,3575,108,186
Acura,3.5 RL 4dr,Sedan,Asia,Front,"$43,755","$39,014",3.5,6,225,18,24,3880,115,197
Acura,3.5 RL w/Navigation 4dr,Sedan,Asia,Front,"$46,100","$41,100",3.5,6,225,18,24,3893,115,197
Acura,NSX coupe 2dr manual S,Sports,Asia,Rear,"$89,765","$79,978",3.2,6,290,17,24,3153,100,174
Audi,A4 1.8T 4dr,Sedan,Europe,Front,"$25,940","$23,508",1.8,4,170,22,31,3252,104,179
Audi,A41.8T convertible 2dr,Sedan,Europe,Front,"$35,940","$32,506",1.8,4,170,23,30,3638,105,180
tom64-3>
答案 1 :(得分:0)
使用saspy V2.4.3,您可以尝试to_csv()在SAS服务器上创建csv文件,然后尝试2.4.3中新增的download()来将csv移至本地文件系统。