我已经使用keras Model功能API定义了一个简单的模型。它的一层是完全顺序的模型,因此我得到了一个嵌套的层结构(请参见下图)。
如何将嵌套层结构转换为平面层结构? (使用脚本,而不是手动...)
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 32, 32, 1) 0
_________________________________________________________________
sequential_1 (Sequential) (None, 8, 8, 12) 720
_________________________________________________________________
flatten_1 (Flatten) (None, 768) 0
_________________________________________________________________
dense_1 (Dense) (None, 1) 769
=================================================================
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) (None, 32, 32, 1) 0
_________________________________________________________________
conv2d_1 (Conv2D) (None, 32, 32, 6) 60
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 16, 16, 6) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 16, 16, 6) 330
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 8, 8, 6) 0
_________________________________________________________________
flatten_1 (Flatten) (None, 384) 0
_________________________________________________________________
dense_1 (Dense) (None, 1) 385
=================================================================
生成嵌套层结构的代码:
def create_network_with_one_subnet():
# define subnetwork
subnet = keras.models.Sequential()
subnet.add(keras.layers.Conv2D(6, (3, 3), padding='same'))
subnet.add(keras.layers.MaxPool2D())
subnet.add(keras.layers.Conv2D(12, (3, 3), padding='same'))
subnet.add(keras.layers.MaxPool2D())
#subnet.summary()
# define complete network
input_shape = (32, 32, 1)
net_in = keras.layers.Input(shape=input_shape)
net_out = subnet(net_in)
net_out = keras.layers.Flatten()(net_out)
net_out = keras.layers.Dense(1)(net_out)
net_complete = keras.Model(inputs=net_in, outputs=net_out)
net_complete.compile(loss='binary_crossentropy',
optimizer=keras.optimizers.Adam(lr=0.001),
metrics=['acc'],
)
net_complete.summary()
return net_complete
答案 0 :(得分:2)
啊,这比预期容易得多。在搜索了正确的关键字:https://groups.google.com/forum/#!msg/keras-users/lJcVK25YDuc/atB6TfwqBAAJ
之后,从此处寻求解决方案def flatten_model(model_nested):
layers_flat = []
for layer in model_nested.layers:
try:
layers_flat.extend(layer.layers)
except AttributeError:
layers_flat.append(layer)
model_flat = keras.models.Sequential(layers_flat)
return model_flat
答案 1 :(得分:0)
用于处理具有多个级别的嵌套模型的更好解决方案:
def flatten_model(model_nested):
def get_layers(layers):
layers_flat = []
for layer in layers:
try:
layers_flat.extend(get_layers(layer.layers))
except AttributeError:
layers_flat.append(layer)
return layers_flat
model_flat = tfk.models.Sequential(
get_layers(model_nested.layers)
)
return model_flat