修改后的baugh-wooley算法乘法verilog代码未正确乘法

时间:2019-02-12 09:07:51

标签: algorithm verilog fpga system-verilog multiplication

以下verilog源代码和/或测试平台在commercial simulators, iverilogformal verification tool (yosys-smtbmc)上均能很好地工作

请保留有关`ifdef FORMAL的投诉,直至稍后。我需要它们与不支持bind命令的yosys-smtbmc一起使用。

我现在正在调试生成代码,因为乘法(使用改良的baugh-wooley算法)尚不起作用。

当断言o_valid时,乘法代码应为o_p = i_a * i_b = 3 * 2 = 6,但波形清楚地显示了代码为o_p = 0x20 = 32

modified baugh-wooley algorithm in verilog

test_multiply.v

// Testbench
module test_multiply;

  parameter A_WIDTH=4, B_WIDTH=4;

  reg i_clk;
  reg i_reset;
  reg i_ce;
  reg signed[(A_WIDTH-1):0] i_a;
  reg signed[(B_WIDTH-1):0] i_b;
  wire signed[(A_WIDTH+B_WIDTH-1):0] o_p;
  wire o_valid;

  // Instantiate design under test
  multiply #(A_WIDTH, B_WIDTH) mul(.clk(i_clk), .reset(i_reset), .in_valid(i_ce), .in_A(i_a), .in_B(i_b), .out_valid(o_valid), .out_C(o_p));


  initial begin
    // Dump waves
    $dumpfile("test_multiply.vcd");
    $dumpvars(0, test_multiply);

    i_clk = 0;
    i_reset = 0;
    i_ce = 0;
    i_a = 0;
    i_b = 0;

  end

  localparam SMALLER_WIDTH = (A_WIDTH <= B_WIDTH) ? A_WIDTH : B_WIDTH;
  localparam NUM_OF_INTERMEDIATE_LAYERS = $clog2(SMALLER_WIDTH);

  genvar i, j; // array index

  generate
    for(i = 0; i < NUM_OF_INTERMEDIATE_LAYERS; i = i + 1) begin
        for(j = 0; j < SMALLER_WIDTH; j = j + 1) begin
            initial $dumpvars(0, test_multiply.mul.middle_layers[i][j]);
        end
    end
  endgenerate

  always #5 i_clk = !i_clk;

  initial begin

    @(posedge i_clk);
    @(posedge i_clk);

    $display("Reset flop.");

    i_reset = 1;

    @(posedge i_clk);
    @(posedge i_clk);

    i_reset = 0;

    @(posedge i_clk);
    @(posedge i_clk);

    i_ce = 1;
    i_a = 3;
    i_b = 2;

    #50 $finish;

  end

endmodule

相乘。v

module multiply #(parameter A_WIDTH=16, B_WIDTH=16)
(clk, reset, in_valid, out_valid, in_A, in_B, out_C); // C=A*B

`ifdef FORMAL
parameter A_WIDTH = 4;
parameter B_WIDTH = 4;
`endif

input clk, reset;
input in_valid; // to signify that in_A, in_B are valid, multiplication process can start
input signed [(A_WIDTH-1):0] in_A;
input signed [(B_WIDTH-1):0] in_B;
output signed [(A_WIDTH+B_WIDTH-1):0] out_C;
output reg out_valid; // to signify that out_C is valid, multiplication finished

/* 
   This signed multiplier code architecture is a combination of row adder tree and 
   modified baugh-wooley algorithm, thus requires an area of O(N*M*logN) and time O(logN)
   with M, N being the length(bitwidth) of the multiplicand and multiplier respectively

   see [url]https://i.imgur.com/NaqjC6G.png[/url] or 
   Row Adder Tree Multipliers in [url]http://www.andraka.com/multipli.php[/url] or
   [url]https://pdfs.semanticscholar.org/415c/d98dafb5c9cb358c94189927e1f3216b7494.pdf#page=10[/url]
   regarding the mechanisms within all layers

   In terms of fmax consideration: In the case of an adder tree, the adders making up the levels
   closer to the input take up real estate (remember the structure of row adder tree).  As the 
   size of the input multiplicand bitwidth grows, it becomes more and more difficult to find a
   placement that does not use long routes involving multiple switch nodes for FPGA.  The result
   is the maximum clocking speed degrades quickly as the size of the bitwidth grows.

   For signed multiplication, see also modified baugh-wooley algorithm for trick in skipping 
   sign extension (implemented as verilog example in [url]https://www.dsprelated.com/showarticle/555.php[/url]),
   thus smaller final routed silicon area.

   [url]https://stackoverflow.com/questions/54268192/understanding-modified-baugh-wooley-multiplication-algorithm/[/url]

   All layers are pipelined, so throughput = one result for each clock cycle 
   but each multiplication result still have latency = NUM_OF_INTERMEDIATE_LAYERS 
*/


// The multiplication of two numbers is equivalent to adding as many copies of one 
// of them, the multiplicand, as the value of the other one, the multiplier.
// Therefore, multiplicand always have the larger width compared to multipliers

localparam SMALLER_WIDTH = (A_WIDTH <= B_WIDTH) ? A_WIDTH : B_WIDTH;
localparam LARGER_WIDTH = (A_WIDTH > B_WIDTH) ? A_WIDTH : B_WIDTH;

wire [(LARGER_WIDTH-1):0] MULTIPLICAND = (A_WIDTH > B_WIDTH) ? in_A : in_B ;
wire [(SMALLER_WIDTH-1):0] MULTIPLIPLIER = (A_WIDTH <= B_WIDTH) ? in_A : in_B ;

`ifdef FORMAL
// to keep the values of multiplicand and multiplier before the multiplication finishes 
reg [(LARGER_WIDTH-1):0] MULTIPLICAND_reg;
reg [(SMALLER_WIDTH-1):0] MULTIPLIPLIER_reg;

always @(posedge clk)
begin
    if(reset) begin
        MULTIPLICAND_reg <= 0;
        MULTIPLIPLIER_reg <= 0;
    end

    else if(in_valid) begin
        MULTIPLICAND_reg <= MULTIPLICAND;
        MULTIPLIPLIER_reg <= MULTIPLIPLIER;
    end
end
`endif

localparam NUM_OF_INTERMEDIATE_LAYERS = $clog2(SMALLER_WIDTH);


/*Binary multiplications and additions for partial products rows*/

// first layer has "SMALLER_WIDTH" entries of data of width "LARGER_WIDTH"
// This resulted in a binary tree with faster vertical addition processes as we have 
// lesser (NUM_OF_INTERMEDIATE_LAYERS) rows to add

// intermediate partial product rows additions
// Imagine a rhombus of height of "SMALLER_WIDTH" and width of "LARGER_WIDTH"
// being re-arranged into binary row adder tree
// such that additions can be done in O(logN) time

//reg [(NUM_OF_INTERMEDIATE_LAYERS-1):0][(SMALLER_WIDTH-1):0][(A_WIDTH+B_WIDTH-1):0] middle_layers;
reg [(A_WIDTH+B_WIDTH-1):0] middle_layers[(NUM_OF_INTERMEDIATE_LAYERS-1):0][0:(SMALLER_WIDTH-1)];
//reg [(NUM_OF_INTERMEDIATE_LAYERS-1):0] middle_layers [0:(SMALLER_WIDTH-1)] [(A_WIDTH+B_WIDTH-1):0];
//reg middle_layers [(NUM_OF_INTERMEDIATE_LAYERS-1):0][0:(SMALLER_WIDTH-1)][(A_WIDTH+B_WIDTH-1):0];

generate // duplicates the leafs of the binary tree

    genvar layer; // layer 0 means the youngest leaf, layer N means the tree trunk

    for(layer=0; layer<NUM_OF_INTERMEDIATE_LAYERS; layer=layer+1) begin: intermediate_layers

        integer pp_index; // leaf index within each layer of the tree
        integer bit_index; // index of binary string within each leaf

        always @(posedge clk)
        begin
            if(reset) 
            begin
                for(pp_index=0; pp_index<SMALLER_WIDTH ; pp_index=pp_index+1)
                    middle_layers[layer][pp_index] <= 0;
            end

            else begin

                if(layer == 0)  // all partial products rows are in first layer
                begin

                    // generation of partial products rows
                    for(pp_index=0; pp_index<SMALLER_WIDTH ; pp_index=pp_index+1)
                        middle_layers[layer][pp_index] <= 
                        (MULTIPLICAND & MULTIPLIPLIER[pp_index]);

                    // see modified baugh-wooley algorithm: [url]https://i.imgur.com/VcgbY4g.png[/url] from
                                        // page 122 of book "Ultra-Low-Voltage Design of Energy-Efficient Digital Circuits"
                    for(pp_index=0; pp_index<SMALLER_WIDTH ; pp_index=pp_index+1)
                        middle_layers[layer][pp_index][LARGER_WIDTH-1] <= 
                       !middle_layers[layer][pp_index][LARGER_WIDTH-1];

                    middle_layers[layer][SMALLER_WIDTH-1] <= !middle_layers[layer][SMALLER_WIDTH-1];
                    middle_layers[layer][0][LARGER_WIDTH] <= 1;
                    middle_layers[layer][SMALLER_WIDTH-1][LARGER_WIDTH] <= 1;
                end

                // adding the partial product rows according to row adder tree architecture
                else begin
                    for(pp_index=0; pp_index<(SMALLER_WIDTH >> layer) ; pp_index=pp_index+1)
                        middle_layers[layer][pp_index] <=
                        middle_layers[layer-1][pp_index<<1] +
                      (middle_layers[layer-1][(pp_index<<1) + 1]) << 1;

                    // bit-level additions using full adders
                    /*for(pp_index=0; pp_index<SMALLER_WIDTH ; pp_index=pp_index+1)
                        for(bit_index=0; bit_index<(LARGER_WIDTH+layer); bit_index=bit_index+1)
                            full_adder fa(.clk(clk), .reset(reset), .ain(), .bin(), .cin(), .sum(), .cout());*/
                end
            end
        end
    end

endgenerate

assign out_C = (reset)? 0 : middle_layers[NUM_OF_INTERMEDIATE_LAYERS-1][0];


/*Checking if the final multiplication result is ready or not*/

reg [($clog2(NUM_OF_INTERMEDIATE_LAYERS)-1):0] out_valid_counter; // to track the multiply stages
reg multiply_had_started;

always @(posedge clk)
begin
    if(reset) 
    begin
        multiply_had_started <= 0;
        out_valid <= 0;
        out_valid_counter <= 0;
    end

    else if(out_valid_counter == NUM_OF_INTERMEDIATE_LAYERS-1) begin
        multiply_had_started <= 0;
        out_valid <= 1;
        out_valid_counter <= 0;
    end

    else if(in_valid && !multiply_had_started) begin
        multiply_had_started <= 1;
        out_valid <= 0; // for consecutive multiplication
    end

    else begin
        out_valid <= 0;
        if(multiply_had_started) out_valid_counter <= out_valid_counter + 1;
    end
end


`ifdef FORMAL

initial assume(reset);
initial assume(in_valid == 0);

wire sign_bit = MULTIPLICAND_reg[LARGER_WIDTH-1] ^ MULTIPLIPLIER_reg[SMALLER_WIDTH-1];

always @(posedge clk)
begin
    if(reset) assert(out_C == 0);

    else if(out_valid) begin
        assert(out_C == (MULTIPLICAND_reg * MULTIPLIPLIER_reg));
        assert(out_C[A_WIDTH+B_WIDTH-1] == sign_bit);
    end
end

`endif

`ifdef FORMAL

localparam user_A = 3;
localparam user_B = 2;

always @(posedge clk)
begin
    cover(in_valid && (in_A == user_A) && (in_B == user_B));
    cover(out_valid);
end

`endif

endmodule

1 个答案:

答案 0 :(得分:0)

问题已解决:现在,以下代码在vivado模拟和形式验证中的cover()中都给出了正确的带符号乘法结果。

请参见multiply.v和相应的正确波形

module multiply #(parameter A_WIDTH=16, B_WIDTH=16)
(clk, reset, in_valid, out_valid, in_A, in_B, out_C); // C=A*B

`ifdef FORMAL
parameter A_WIDTH = 4;
parameter B_WIDTH = 6;
`endif

input clk, reset;
input in_valid; // to signify that in_A, in_B are valid, multiplication process can start
input signed [(A_WIDTH-1):0] in_A;
input signed [(B_WIDTH-1):0] in_B;
output signed [(A_WIDTH+B_WIDTH-1):0] out_C;
output reg out_valid; // to signify that out_C is valid, multiplication finished

/* 
   This signed multiplier code architecture is a combination of row adder tree and 
   modified baugh-wooley algorithm, thus requires an area of O(N*M*logN) and time O(logN)
   with M, N being the length(bitwidth) of the multiplicand and multiplier respectively

   see https://i.imgur.com/NaqjC6G.png or 
   Row Adder Tree Multipliers in http://www.andraka.com/multipli.php or
   https://pdfs.semanticscholar.org/415c/d98dafb5c9cb358c94189927e1f3216b7494.pdf#page=10
   regarding the mechanisms within all layers

   In terms of fmax consideration: In the case of an adder tree, the adders making up the levels
   closer to the input take up real estate (remember the structure of row adder tree).  As the 
   size of the input multiplicand bitwidth grows, it becomes more and more difficult to find a
   placement that does not use long routes involving multiple switch nodes for FPGA.  The result
   is the maximum clocking speed degrades quickly as the size of the bitwidth grows.

   For signed multiplication, see also modified baugh-wooley algorithm for trick in skipping 
   sign extension (implemented as verilog example in https://www.dsprelated.com/showarticle/555.php),
   thus smaller final routed silicon area.
   https://stackoverflow.com/questions/54268192/understanding-modified-baugh-wooley-multiplication-algorithm/

   All layers are pipelined, so throughput = one result for each clock cycle 
   but each multiplication result still have latency = NUM_OF_INTERMEDIATE_LAYERS 
*/


// The multiplication of two numbers is equivalent to adding as many copies of one 
// of them, the multiplicand, as the value of the other one, the multiplier.
// Therefore, multiplicand always have the larger width compared to multipliers

localparam SMALLER_WIDTH = (A_WIDTH <= B_WIDTH) ? A_WIDTH : B_WIDTH;
localparam LARGER_WIDTH = (A_WIDTH > B_WIDTH) ? A_WIDTH : B_WIDTH;

wire [(LARGER_WIDTH-1):0] MULTIPLICAND = (A_WIDTH > B_WIDTH) ? in_A : in_B ;
wire [(SMALLER_WIDTH-1):0] MULTIPLIER = (A_WIDTH <= B_WIDTH) ? in_A : in_B ;


// to keep the values of multiplicand and multiplier before the multiplication finishes 
reg signed [(LARGER_WIDTH-1):0] MULTIPLICAND_reg;
reg signed [(SMALLER_WIDTH-1):0] MULTIPLIER_reg;

always @(posedge clk)
begin
    if(reset) begin
        MULTIPLICAND_reg <= 0;
        MULTIPLIER_reg <= 0;
    end

    else if(in_valid) begin
        MULTIPLICAND_reg <= MULTIPLICAND;
        MULTIPLIER_reg <= MULTIPLIER;
    end
end


localparam NUM_OF_INTERMEDIATE_LAYERS = $clog2(SMALLER_WIDTH);


/*Binary multiplications and additions for partial products rows*/

// first layer has "SMALLER_WIDTH" entries of data of width "LARGER_WIDTH"
// This resulted in a binary tree with faster vertical addition processes as we have 
// lesser (NUM_OF_INTERMEDIATE_LAYERS) rows to add

// intermediate partial product rows additions
// Imagine a rhombus of height of "SMALLER_WIDTH" and width of "LARGER_WIDTH"
// being re-arranged into binary row adder tree
// such that additions can be done in O(logN) time

//reg [(NUM_OF_INTERMEDIATE_LAYERS-1):0][(SMALLER_WIDTH-1):0][(A_WIDTH+B_WIDTH-1):0] middle_layers;
reg signed [(A_WIDTH+B_WIDTH-1):0] middle_layers[NUM_OF_INTERMEDIATE_LAYERS:0][0:(SMALLER_WIDTH-1)];
//reg [(NUM_OF_INTERMEDIATE_LAYERS-1):0] middle_layers [0:(SMALLER_WIDTH-1)] [(A_WIDTH+B_WIDTH-1):0];
//reg middle_layers [(NUM_OF_INTERMEDIATE_LAYERS-1):0][0:(SMALLER_WIDTH-1)][(A_WIDTH+B_WIDTH-1):0];

generate // duplicates the leafs of the binary tree

    genvar layer; // layer 0 means the youngest leaf, layer N means the tree trunk

    for(layer=0; layer<=NUM_OF_INTERMEDIATE_LAYERS; layer=layer+1) begin: intermediate_layers

        integer pp_index; // leaf index within each layer of the tree

        always @(posedge clk)
        begin
            if(reset) 
            begin
                for(pp_index=0; pp_index<SMALLER_WIDTH ; pp_index=pp_index+1)
                    middle_layers[layer][pp_index] <= 0;
            end

            else begin      

                if(layer == 0)  // all partial products rows are in first layer
                begin               
                    // generation of partial products rows
                    for(pp_index=0; pp_index<SMALLER_WIDTH ; pp_index=pp_index+1)
                        middle_layers[layer][pp_index] <= MULTIPLIER[pp_index] ? MULTIPLICAND:0;    

                    // see modified baugh-wooley algorithm: https://i.imgur.com/VcgbY4g.png from
                    // page 122 of book: Ultra-Low-Voltage Design of Energy-Efficient Digital Circuits
                    for(pp_index=0; pp_index<(SMALLER_WIDTH-1) ; pp_index=pp_index+1) // MSB inversion
                        middle_layers[layer][pp_index][LARGER_WIDTH-1] <= 
                        (MULTIPLICAND[LARGER_WIDTH-1] & MULTIPLIER[pp_index]) ? 0:1;

                    for(pp_index=(LARGER_WIDTH-SMALLER_WIDTH); pp_index<(LARGER_WIDTH-1) ; pp_index=pp_index+1) // last partial product row inversion
                        //the starting index is to consider the condition where A_WIDTH != B_WIDTH
                        middle_layers[layer][SMALLER_WIDTH-1][pp_index] <= 
                        (MULTIPLICAND[pp_index] & MULTIPLIER[SMALLER_WIDTH-1]) ? 0:1;

                    middle_layers[layer][0][LARGER_WIDTH] <= 1;
                    middle_layers[layer][SMALLER_WIDTH-1][LARGER_WIDTH] <= 1;
                end

                // adding the partial product rows according to row adder tree architecture
                else begin
                    for(pp_index=0; pp_index<(SMALLER_WIDTH >> layer) ; pp_index=pp_index+1)
                    begin
                        if(pp_index==0)
                            middle_layers[layer][pp_index] <=
                            middle_layers[layer-1][0] +
                            (middle_layers[layer-1][1] << layer);

                        else middle_layers[layer][pp_index] <=
                            middle_layers[layer-1][pp_index<<1] +
                            (middle_layers[layer-1][(pp_index<<1) + 1] << layer);
                    end
                end
            end
        end
    end

endgenerate


assign out_C = (reset)? 0 : mul_result;


// both A and B are of negative numbers
wire both_negative = MULTIPLICAND_reg[LARGER_WIDTH-1] & MULTIPLIER_reg[SMALLER_WIDTH-1]; 

/*
the following is to deal with the shortcomings of the published modified baugh-wooley algorithm
which does not handle the case where A_WIDTH != B_WIDTH

The countermeasure does not do "To build a 6x4 multplier you can build a 6x6 multiplier, but replicate 
the sign bit of the short word 3 times, and ignore the top 2 bits of the result." , instead it uses 
some smart tricks/logic described by the signal 'modify_result'. The signal 'modify_result' is not 
asserted when one number is positive, and another is negative.

Please use pencil and paper method (and signals waveform) to verify or understand this.
I did not do a rigorous math proof on this countermeasure.

Instead I modify the "modified baugh-wooley algorithm" by debugging wrong multiplication results from
formal verification cover(in_valid && (in_A == A_value) && (in_B == B_value)); waveforms 
together with manual handwritten multiplication on paper. 

The countermeasure is considered successful when assert(out_C == (MULTIPLICAND_reg * MULTIPLIER_reg)); 
passed during cover() verification

Besides, the last partial product row inversion mechanism is also modified to handle this shortcoming
*/

wire modify_result = (A_WIDTH == B_WIDTH) || ((A_WIDTH != B_WIDTH) && both_negative);

wire signed [(A_WIDTH+B_WIDTH-1):0] mul_result;

assign mul_result = (modify_result) ?
        middle_layers[NUM_OF_INTERMEDIATE_LAYERS][0] : 
       {{(LARGER_WIDTH-SMALLER_WIDTH){sign_bit}} ,
        middle_layers[NUM_OF_INTERMEDIATE_LAYERS][0][LARGER_WIDTH +: SMALLER_WIDTH] , 
        middle_layers[NUM_OF_INTERMEDIATE_LAYERS][0][0 +: SMALLER_WIDTH]} ;



/*Checking if the final multiplication result is ready or not*/

reg [($clog2(NUM_OF_INTERMEDIATE_LAYERS)-1):0] out_valid_counter; // to track the multiply stages
reg multiply_had_started;

always @(posedge clk)
begin
    if(reset) 
    begin
        multiply_had_started <= 0;
        out_valid <= 0;
        out_valid_counter <= 0;
    end

    else if(out_valid_counter == NUM_OF_INTERMEDIATE_LAYERS-1) begin
        multiply_had_started <= 0;
        out_valid <= 1;
        out_valid_counter <= 0;
    end

    else if(in_valid && !multiply_had_started) begin
        multiply_had_started <= 1;
        out_valid <= 0; // for consecutive multiplication
    end

    else begin
        out_valid <= 0;
        if(multiply_had_started) out_valid_counter <= out_valid_counter + 1;
    end
end


wire sign_bit = MULTIPLICAND_reg[LARGER_WIDTH-1] ^ MULTIPLIER_reg[SMALLER_WIDTH-1];

`ifdef FORMAL

initial assume(reset);
initial assume(in_valid == 0);


always @(posedge clk)
begin
    if(reset) assert(out_C == 0);

    else if(out_valid) begin
        assert(out_C == (MULTIPLICAND_reg * MULTIPLIER_reg));
        assert(out_C[A_WIDTH+B_WIDTH-1] == sign_bit);
    end
end

`endif

`ifdef FORMAL

wire signed [(A_WIDTH-1):0] A_value = $anyconst;
wire signed [(B_WIDTH-1):0] B_value = $anyconst;

always @(posedge clk)
begin
    assume(A_value != 0);
    assume(B_value != 0);
    cover(in_valid && (in_A == A_value) && (in_B == B_value));
    cover(out_valid);
end

`endif

endmodule

correct signed multiplication result