我目前正在尝试为数据集中的每个fruit
列创建一个平均收入列。
数据集集如下:
Time England Apples ... England Watermelons England Price
0 1/01/2011 0:30 6135.998518 ... 0.000000 25.00
1 1/01/2011 1:00 5711.638352 ... 0.000000 24.43
2 1/01/2011 1:30 5455.901902 ... 0.000000 25.02
3 1/01/2011 2:00 5130.634418 ... 0.000000 22.82
4 1/01/2011 2:30 4854.064390 ... 0.000000 21.19
5 1/01/2011 3:00 4654.938155 ... 0.000000 22.28
6 1/01/2011 3:30 4413.649635 ... 0.000000 19.64
7 1/01/2011 4:00 4153.377478 ... 0.000000 19.83
8 1/01/2011 4:30 4099.620177 ... 0.000000 19.80
9 1/01/2011 5:00 4041.403822 ... 0.000000 18.85
10 1/01/2011 5:30 4097.059952 ... 0.000000 19.49
11 1/01/2011 6:00 4074.397538 ... 0.000000 18.68
12 1/01/2011 6:30 4141.839692 ... 0.000000 20.03
13 1/01/2011 7:00 4463.231217 ... 0.000000 21.92
14 1/01/2011 7:30 4727.591175 ... 0.000000 21.48
15 1/01/2011 8:00 4842.730830 ... 0.000000 20.88
16 1/01/2011 8:30 5206.647033 ... 0.000000 24.87
17 1/01/2011 9:00 5533.648183 ... 0.000000 25.24
18 1/01/2011 9:30 5921.572143 ... 0.000000 25.31
19 1/01/2011 10:00 6279.324155 ... 0.000000 25.32
20 1/01/2011 10:30 6709.511942 ... 0.000000 25.31
21 1/01/2011 11:00 6978.742550 ... 0.000000 25.54
22 1/01/2011 11:30 7110.139363 ... 0.000000 27.86
23 1/01/2011 12:00 7063.761970 ... 0.000000 24.49
24 1/01/2011 12:30 6992.549385 ... 0.000000 25.31
25 1/01/2011 13:00 6961.793427 ... 0.000000 25.26
26 1/01/2011 13:30 7055.875967 ... 0.000000 25.31
27 1/01/2011 14:00 7142.211047 ... 0.000000 25.31
28 1/01/2011 14:30 7228.536090 ... 0.000000 26.35
29 1/01/2011 15:00 7299.410813 ... 0.000000 27.52
... ... ... ... ... ...
142002 6/02/2019 9:30 7676.377063 ... 330.175727 111.45
142003 6/02/2019 10:00 7670.922868 ... 331.714652 114.43
142004 6/02/2019 10:30 7658.970773 ... 315.955275 115.47
142005 6/02/2019 11:00 7654.404070 ... 331.450534 118.27
142006 6/02/2019 11:30 7634.777022 ... 329.376822 130.77
142007 6/02/2019 12:00 7663.339550 ... 308.338850 127.27
142008 6/02/2019 12:30 7668.300007 ... 308.836712 128.69
142009 6/02/2019 13:00 7633.525948 ... 313.522324 156.85
142010 6/02/2019 13:30 7614.107300 ... 317.741907 165.16
142011 6/02/2019 14:00 7647.885410 ... 318.575012 139.67
142012 6/02/2019 14:30 7758.311397 ... 300.859020 129.19
142013 6/02/2019 15:00 7792.523983 ... 288.397673 265.37
142014 6/02/2019 15:30 7849.658337 ... 268.816729 262.73
142015 6/02/2019 16:00 7962.783263 ... 260.514448 257.19
142016 6/02/2019 16:30 8008.872848 ... 217.321907 164.39
142017 6/02/2019 17:00 8001.217682 ... 196.016162 129.90
142018 6/02/2019 17:30 8002.191668 ... 155.652355 106.81
142019 6/02/2019 18:00 8051.317657 ... 79.418596 112.66
142020 6/02/2019 18:30 8079.327247 ... 36.547664 103.34
142021 6/02/2019 19:00 8056.183235 ... 9.403131 110.64
142022 6/02/2019 19:30 8060.892678 ... 0.306932 115.63
142023 6/02/2019 20:00 8083.306235 ... 0.000000 109.97
142024 6/02/2019 20:30 7928.332383 ... 0.000000 108.33
142025 6/02/2019 21:00 7736.462477 ... 0.000000 92.86
142026 6/02/2019 21:30 7439.131347 ... 0.000000 88.37
142027 6/02/2019 22:00 7080.748895 ... 0.000000 82.93
142028 6/02/2019 22:30 6991.127062 ... 0.000000 90.36
142029 6/02/2019 23:00 6922.695807 ... 0.000000 77.94
142030 6/02/2019 23:30 6850.425935 ... 0.000000 83.39
142031 7/02/2019 0:00 6666.447972 ... 0.000000 82.67
[142032 rows x 7 columns]
我正在尝试为每个fruit
添加一个新的栏目,这将是200期间的平均收入(在Excel中相当于执行SUMPRODUCT(Apples:Price)/SUM(Apples)
我必须在python中执行此操作的代码对于小型数据集可以很好地工作,但是对于我的大型数据集,它需要很长时间才能运行(超过20分钟)。
我的代码如下:
import pandas as pd
import numpy as np
df = pd.read_csv("england_raw.csv")
size = 200
max_size = df.shape[0]
for a in [' Apples',' Oranges',' Pears',' Apricots',' Watermelons']:
e = 'England' + a + '_W'
df[e] = np.empty(max_size)
for i in range(max_size-size):
df[e][i] = np.average(df['England Price'][i:i+size], weights=df['England'+a][i:i+size])
df.to_csv("england_done.csv",index=False)
有什么方法可以修改我的代码以加快处理时间,甚至可以使用其他方法来达到我想要的结果?
谢谢。
所需结果(等同于Excel):
编辑:
答案 0 :(得分:1)
这是您要找的吗?它为您在每列中提供一个200点的窗口的滚动平均值。
# Intermediate columns for calculations
df['revenue'] = 0
df['roll_rev_sum'] = 0
df['roll_qty_sum'] = 0
# Please adjust your column index accordingly. This is quite a brute solution
for col in df.columns[1:-1]:
e = 'England' + col + '_W'
df['revenue'] = df[col] * df['England Price']
df['roll_rev_sum'] = df.loc[:,'revenue'].rolling(200).sum()
df['roll_qty_sum'] = df.loc[:,col].rolling(200).sum()
df[e] = df['roll_rev_sum']/df['roll_qty_sum']
编辑:已更新,其中包括注释中描述的中间列,还包括OP指定的更多详细信息。