检查目标时出错:conv2d_transpose的预期形状

时间:2019-02-12 00:34:04

标签: python keras neural-network autoencoder deconvolution

我想使用Keras为Faces数据集实现自动编码器。 我使用train_on_batch是因为数据集太大,但是我遇到了这个问题:

for i in range(10):
    batch_index = 0
    while batch_index <= train_data.batch_index:
        data = train_data.next()
        result = train_result.next()
        model.train_on_batch(data[0],result[0])
        batch_index = batch_index + 1
          ---------------------------------------------------------------------------
    ValueError                                Traceback (most recent     call last)
      <ipython-input-54-d7d64e954a89> in <module>
  4         data = train_data.next()
  5         result = train_result.next()
----> 6         model.train_on_batch(data[0],result[0])
  7         batch_index = batch_index + 1

~/.local/lib/python3.5/site-packages/keras/engine/training.py in     train_on_batch(self, x, y, sample_weight, class_weight)
   1209             x, y,
   1210             sample_weight=sample_weight,
-> 1211             class_weight=class_weight)
   1212         if self._uses_dynamic_learning_phase():
   1213             ins = x + y + sample_weights + [1.]

     ~/.local/lib/python3.5/site-packages/keras/engine/training.py in _standardize_user_data(self, x, y, sample_weight, class_weight, check_array_lengths, batch_size)
787                 feed_output_shapes,
788                 check_batch_axis=False,  # Don't enforce the batch size.
--> 789                 exception_prefix='target')
    790 
    791             # Generate sample-wise weight values given the     `sample_weight` and

~/.local/lib/python3.5/site-packages/keras/engine/training_utils.py in              standardize_input_data(data, names, shapes, check_batch_axis, exception_prefix)
136                             ': expected ' + names[i] + ' to have shape ' +
137                             str(shape) + ' but got array with shape ' +
--> 138                             str(data_shape))
    139     return data
    140 

ValueError: Error when checking target: expected conv2d_transpose_21 to      have shape (250, 250, 1) but got array with shape (250, 250, 3)

我的模特是同伴:

Input_Layer = keras.Input((250,250,3))
x = keras.layers.Conv2D(20,5,activation='relu')(Input_Layer)
x = keras.layers.MaxPooling2D(2)(x)
x = keras.layers.Conv2D(20,2,activation = 'relu')(x)
x = keras.layers.MaxPooling2D(2)(x)
encoded = x
x = keras.layers.UpSampling2D(2)(x)
x = keras.layers.Conv2DTranspose(20,2,activation='relu')(x)
x = keras.layers.UpSampling2D(2)(x)
x = keras.layers.Conv2DTranspose(20,5,activation= 'relu')(x)
model = keras.Model(input = Input_Layer ,output = x)

我正在使用keras ImageDataGenerator加载图像,该图像加载:

train_data = trainGenerator.flow_from_directory('lfw',batch_size=67,target_size=(250, 250))
Found 13199 images belonging to 1 classes.

这是所有代码

from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img
import matplotlib.pyplot as plt
import numpy as np
import keras

def cutHalf(img):
    for j in range(125):
        for i in range(250):
            img[i][j][0]=1
            img[i][j][1]=1
            img[i][j][2]=1
    return img

img_width = 250
img_height = 250
train_datagen = ImageDataGenerator(rescale=1./255)
train_datagen2 = ImageDataGenerator(rescale=1./255,preprocessing_function=cutHalf)

train_generator = train_datagen.flow_from_directory(
        'lfw',target_size=(img_width, img_height),
        class_mode=None)
train_generator2 = train_datagen2.flow_from_directory(
        'lfw',target_size=(img_width, img_height),
        class_mode=None)

def fixed_generator(generator,generator2):
    batch_index = 0
    while batch_index <= generator.batch_index:
        yield (generator.next(), generator2.next())

Input_Layer = keras.Input(shape=(img_width, img_height,3))
x = keras.layers.Conv2D(20,5,activation='relu')(Input_Layer)
x = keras.layers.MaxPooling2D(2)(x)
x = keras.layers.Conv2D(20,2,activation = 'relu')(x)
x = keras.layers.MaxPooling2D(2)(x)
encoded = x
x = keras.layers.UpSampling2D(2)(x)
x = keras.layers.Conv2DTranspose(20,2,activation='relu')(x)
x = keras.layers.UpSampling2D(2)(x)
x = keras.layers.Conv2DTranspose(20,5,activation= 'relu')(x)
model = keras.Model(input = Input_Layer ,output = x)

model.compile(optimizer='adam', 
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit_generator(
        fixed_generator(train_generator,train_generator2),
        nb_epoch=20,
        steps_per_epoch=50
        )

1 个答案:

答案 0 :(得分:0)

我假设train_data.next()train_result.next()都返回一个大小为(1,250,250,3)的数组。

当我尝试运行您的代码时,出现以下错误:

  

回溯(最近通话最近一次):

     

文件“”,第1行,在       runfile('/ Users / lorenzo / Documents / stackoverflow / auto_encoder.py',wdir ='/ Users / lorenzo / Documents / stackoverflow')

     

文件   “ /anaconda3/lib/python3.6/site-packages/spyder/utils/site/sitecustomize.py”,   运行文件中的第705行       execfile(文件名,命名空间)

     

文件   “ /anaconda3/lib/python3.6/site-packages/spyder/utils/site/sitecustomize.py”,   第102行,在execfile中       exec(compile(f.read(),文件名,'exec'),命名空间)

     

文件“ /Users/lorenzo/Documents/stackoverflow/auto_encoder.py”,行   43在       model.train_on_batch(onedata,oneresult)

     

文件   “ /anaconda3/lib/python3.6/site-packages/keras/engine/training.py”,   1211行,在train_on_batch中       class_weight = class_weight)

     

文件   “ /anaconda3/lib/python3.6/site-packages/keras/engine/training.py”,   _standardize_user_data中的第789行       exception_prefix ='target')

     

文件   “ /anaconda3/lib/python3.6/site-packages/keras/engine/training_utils.py”,   第138行,位于standardize_input_data中       str(data_shape))

     

ValueError:检查目标时出错:预期转换为conv2d_transpose_6   形状为(250,250,20),但形状为(250,250,3)

这是说最后一个Conv2DTranspose层的预期目标大小是(250, 250, 20),但是您使用形状为(250, 250, 3)的数组输入模型。

解决方案: 应该将x = keras.layers.Conv2DTranspose(20,5,activation= 'relu')(x)更改为x = keras.layers.Conv2DTranspose(3,5,activation= 'relu')(x),以便模型的输出与您的目标大小相匹配。

编辑: 就像@DanielMöller所说的那样,损失应该是'categorical_crossentropy',最后一层的过滤器计数也应该是3。

以下是示例输出:

Found 530 images belonging to 1 classes.
Found 530 images belonging to 1 classes.
D:/D_Document/Github/keras_autoencoder.py:65: UserWarning: Update your `Model` call to the Keras 2 API: `Model(inputs=Tensor("in..., outputs=Tensor("co...)`
  model = keras.Model(input = Input_Layer ,output = x)
D:/D_Document/Github/keras_autoencoder.py:78: UserWarning: The semantics of the Keras 2 argument `steps_per_epoch` is not the same as the Keras 1 argument `samples_per_epoch`. `steps_per_epoch` is the number of batches to draw from the generator at each epoch. Basically steps_per_epoch = samples_per_epoch/batch_size. Similarly `nb_val_samples`->`validation_steps` and `val_samples`->`steps` arguments have changed. Update your method calls accordingly.
  steps_per_epoch=50
D:/D_Document/Github/keras_autoencoder.py:78: UserWarning: Update your `fit_generator` call to the Keras 2 API: `fit_generator(<generator..., epochs=20, steps_per_epoch=50)`
  steps_per_epoch=50
Epoch 1/20
50/50 [==============================] - 102s 2s/step - loss: 0.6981 - acc: 0.6931
Epoch 2/20
50/50 [==============================] - 95s 2s/step - loss: 0.6406 - acc: 0.7584
Epoch 3/20
50/50 [==============================] - 92s 2s/step - loss: 0.6396 - acc: 0.7588
Epoch 4/20
50/50 [==============================] - 93s 2s/step - loss: 0.6381 - acc: 0.7543
Epoch 5/20
50/50 [==============================] - 93s 2s/step - loss: 0.6377 - acc: 0.7618
Epoch 6/20
50/50 [==============================] - 89s 2s/step - loss: 0.6357 - acc: 0.7569
Epoch 7/20
50/50 [==============================] - 91s 2s/step - loss: 0.6394 - acc: 0.7651
Epoch 8/20
50/50 [==============================] - 93s 2s/step - loss: 0.6380 - acc: 0.7660
Epoch 9/20
50/50 [==============================] - 93s 2s/step - loss: 0.6380 - acc: 0.7643
Epoch 10/20
50/50 [==============================] - 89s 2s/step - loss: 0.6399 - acc: 0.7669