我想基于该单元格的另一列突出显示我的数据透视图中的单元格。例如,我想突出显示基于“颜色”列的“值”。
import pandas as pd
data = { 'Week': [1,2,3,4,5,1,2,3,4,5],
'Color': ['Green','Red','Green','Yellow','Red','Green','Yellow','Red','Yellow','Red'],
'Part': ['A','A','A','A','A','B','B','B','B','B'],
'Value': [10, -20, 20, -20, -10, 10, -5, -8, -9, -10]
}
df = pd.DataFrame(data)
df_pivot = df.pivot_table(index='Part', columns='Week',values='Value')
预期输出:
很遗憾,我无法在网络搜索中找到相关示例来帮助我。
答案 0 :(得分:1)
使用熊猫内置的styling功能:
import pandas as pd
# Initialize example dataframe
data = {
'Week': [1, 2, 3, 4, 5, 1, 2, 3, 4, 5],
'Color': ['Green', 'Red', 'Green', 'Yellow', 'Red', 'Green', 'Yellow', 'Red', 'Yellow', 'Red'],
'Part': ['A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B'],
'Value': [10, -20, 20, -20, -10, 10, -5, -8, -9, -10]
}
df = pd.DataFrame(data)
# Merge 'Color' and 'Value' columns into one single column
df['Value'] = list(zip(df.Color, df.Value))
# Perform pivot operation
df = df.pivot(index='Part', columns='Week', values='Value')
# Split into two dataframes: a colors dataframe and a numerical values dataframe
color_df = df.applymap(lambda x: x[0])
value_df = df.applymap(lambda x: x[1])
# Transform dataframe with colors into formatting commands
color_df = color_df.applymap(lambda x: f'background-color: {x.lower()}')
# Apply color styling to values dataframe
styled_df = value_df.style.apply(lambda x: color_df, axis=None)
styled_df.to_excel('output.xlsx')
答案 1 :(得分:0)