大熊猫统计功能与boost :: accumulators之间的区别

时间:2019-02-11 18:14:34

标签: python c++ pandas boost

使用pandasboost::accumulators进行统计计算时会得到不同的结果,并且不确定为什么。

下面有一个简单的示例,其中使用熊猫来计算某些收益的均值和方差

import pandas

vals = [ 1, 1, 2, 1, 3, 2, 3, 4, 6, 3, 2, 1 ]
rets = pandas.Series(vals).pct_change()

print(f'count:    {len(rets)}')
print(f'mean:     {rets.mean()}')
print(f'variance: {rets.var()}')

此输出为:

count:    12
mean:     0.19696969696969696
variance: 0.6156565656565657

我正在使用boost::accumulators进行C ++的统计计算

#include <iostream>
#include <iomanip>
#include <cmath>
#include <boost/accumulators/accumulators.hpp>
#include <boost/accumulators/statistics/stats.hpp>
#include <boost/accumulators/statistics/count.hpp>
#include <boost/accumulators/statistics/mean.hpp>
#include <boost/accumulators/statistics/variance.hpp>

namespace acc = boost::accumulators;

int main()
{
    acc::accumulator_set<double, acc::stats<acc::tag::count,
                                            acc::tag::mean,
                                            acc::tag::variance>> stats;

    double prev = NAN;
    for (double val : { 1, 1, 2, 1, 3, 2, 3, 4, 6, 3, 2, 1 })
    {
        const double ret = (val - prev) / prev;

        stats(std::isnan(ret) ? 0 : ret);

        prev = val;
    }

    std::cout << std::setprecision(16)
              << "count:    " << acc::count(stats)    << '\n'
              << "mean:     " << acc::mean(stats)     << '\n'
              << "variance: " << acc::variance(stats) << '\n';

    return 0;
}

此输出为:

count:    12
mean:     0.1805555555555556
variance: 0.5160108024691359
  • 为什么熊猫和boost :: accumulators的均值和方差不同?
  • 我该怎么做才能使boost :: accumulators获得熊猫结果?

1 个答案:

答案 0 :(得分:1)

在大熊猫中,通过defualt执行NNP NNP时,它将删除nan列,如果我们将mean填充为0,则输出相同,因为您执行nan ,第一项应该是NaN

pct_change

关于rets.mean() Out[67]: 0.19696969696969696 rets.fillna(0).mean() Out[69]: 0.18055555555555555 ,将自由度设为0

var