我有一张表(超过2M条记录),可以跟踪分类帐。
一些条目加点,而另一些条目减去点(只有两种条目)。减去点的条目始终引用用referenceentryid
从中减去的(相加)条目。添加的条目将始终在NULL
中包含referenceentryid
。
此表具有dead
列,当某些添加物耗尽或过期时,或当减法指向“无效”添加时,工作人员会将其设置为true
。由于该表在dead=false
上具有部分索引,因此对活动行进行SELECT的速度非常快。
我的问题在于将dead
设置为NULL
的工作人员的绩效。
流为:
1.为每个添加项获得一个条目,该条目指示添加,减去的数量以及该数量是否过期。
2.过滤掉既未过期又具有除减法之外的更多内容的条目。
3.在过滤的一组条目中的dead=true
或id
的每一行上更新referenceentryid
。
WITH entries AS
(
SELECT
additions.id AS id,
SUM(subtractions.amount) AS subtraction,
additions.amount AS addition,
additions.expirydate <= now() AS expired
FROM
loyalty_ledger AS subtractions
INNER JOIN
loyalty_ledger AS additions
ON
additions.id = subtractions.referenceentryid
WHERE
subtractions.dead = FALSE
AND subtractions.referenceentryid IS NOT NULL
GROUP BY
subtractions.referenceentryid, additions.id
), dead_entries AS (
SELECT
id
FROM
entries
WHERE
subtraction >= addition OR expired = TRUE
)
-- THE SLOW BIT:
SELECT
*
FROM
loyalty_ledger AS ledger
WHERE
ledger.dead = FALSE AND
(ledger.id IN (SELECT id FROM dead_entries) OR ledger.referenceentryid IN (SELECT id FROM dead_entries));
在上面的查询中,内部运行非常快(几秒钟),而最后一部分将永远运行。
我在桌子上有以下索引:
CREATE TABLE IF NOT EXISTS loyalty_ledger (
id SERIAL PRIMARY KEY,
programid bigint NOT NULL,
FOREIGN KEY (programid) REFERENCES loyalty_programs(id) ON DELETE CASCADE,
referenceentryid bigint,
FOREIGN KEY (referenceentryid) REFERENCES loyalty_ledger(id) ON DELETE CASCADE,
customerprofileid bigint NOT NULL,
FOREIGN KEY (customerprofileid) REFERENCES customer_profiles(id) ON DELETE CASCADE,
amount int NOT NULL,
expirydate TIMESTAMPTZ,
dead boolean DEFAULT false,
expired boolean DEFAULT false
);
CREATE index loyalty_ledger_referenceentryid_idx ON loyalty_ledger (referenceprofileid) WHERE dead = false;
CREATE index loyalty_ledger_customer_program_idx ON loyalty_ledger (customerprofileid, programid) WHERE dead = false;
我正在尝试优化查询的最后一部分。
EXPLAIN
给了我以下内容:
"Index Scan using loyalty_ledger_referenceentryid_idx on loyalty_ledger ledger (cost=103412.24..4976040812.22 rows=986583 width=67)"
" Filter: ((SubPlan 3) OR (SubPlan 4))"
" CTE entries"
" -> GroupAggregate (cost=1.47..97737.83 rows=252177 width=25)"
" Group Key: subtractions.referenceentryid, additions.id"
" -> Merge Join (cost=1.47..91390.72 rows=341928 width=28)"
" Merge Cond: (subtractions.referenceentryid = additions.id)"
" -> Index Scan using loyalty_ledger_referenceentryid_idx on loyalty_ledger subtractions (cost=0.43..22392.56 rows=341928 width=12)"
" Index Cond: (referenceentryid IS NOT NULL)"
" -> Index Scan using loyalty_ledger_pkey on loyalty_ledger additions (cost=0.43..80251.72 rows=1683086 width=16)"
" CTE dead_entries"
" -> CTE Scan on entries (cost=0.00..5673.98 rows=168118 width=4)"
" Filter: ((subtraction >= addition) OR expired)"
" SubPlan 3"
" -> CTE Scan on dead_entries (cost=0.00..3362.36 rows=168118 width=4)"
" SubPlan 4"
" -> CTE Scan on dead_entries dead_entries_1 (cost=0.00..3362.36 rows=168118 width=4)"
似乎查询的最后一部分效率很低。关于如何加快速度的任何想法?
答案 0 :(得分:1)
对于大型数据集,我发现半联接的性能要优于查询列表:
from
loyalty_ledger as ledger
WHERE
ledger.dead = FALSE AND (
exists (
select null
from dead_entries d
where d.id = ledger.id
) or
exists (
select null
from dead_entries d
where d.id = ledger.referenceentryid
)
)
老实说,我不知道,但是我认为这些都值得一试。它的代码更少,更直观,但是不能保证它们会更好地工作:
ledger.dead = FALSE AND
exists (
select null
from dead_entries d
where d.id = ledger.id or d.id = ledger.referenceentryid
)
或
ledger.dead = FALSE AND
exists (
select null
from dead_entries d
where d.id in (ledger.id, ledger.referenceentryid)
)
答案 1 :(得分:0)
最终帮助我的是在第二个id IN
步骤中进行了WITH
过滤,将IN
替换为ANY
语法:
WITH entries AS
(
SELECT
additions.id AS id,
additions.amount - coalesce(SUM(subtractions.amount),0) AS balance,
additions.expirydate <= now() AS passed_expiration
FROM
loyalty_ledger AS additions
LEFT JOIN
loyalty_ledger AS subtractions
ON
subtractions.dead = FALSE AND
additions.id = subtractions.referenceentryid
WHERE
additions.dead = FALSE AND additions.referenceentryid IS NULL
GROUP BY
subtractions.referenceentryid, additions.id
), dead_rows AS (
SELECT
l.id AS id,
-- only additions that still have usable points can expire
l.referenceentryid IS NULL AND e.balance > 0 AND e.passed_expiration AS expired
FROM
loyalty_ledger AS l
INNER JOIN
entries AS e
ON
(l.id = e.id OR l.referenceentryid = e.id)
WHERE
l.dead = FALSE AND
(e.balance <= 0 OR e.passed_expiration)
ORDER BY e.balance DESC
)
UPDATE
loyalty_ledger AS l
SET
(dead, expired) = (TRUE, d.expired)
FROM
dead_rows AS d
WHERE
l.id = d.id AND
l.dead = FALSE;
答案 2 :(得分:0)
我也相信
-- THE SLOW BIT:
SELECT
*
FROM
loyalty_ledger AS ledger
WHERE
ledger.dead = FALSE AND
(ledger.id IN (SELECT id FROM dead_entries) OR ledger.referenceentryid IN (SELECT id FROM dead_entries));
可以重写为JOIN
和UNION ALL
,这很可能还会生成其他执行计划,并且速度可能更快。
但是如果没有其他表结构,很难确定。
SELECT
*
FROM
loyalty_ledger AS ledger
INNER JOIN (SELECT id FROM dead_entries) AS dead_entries
ON ledger.id = dead_entries.id AND ledger.dead = FALSE
UNION ALL
SELECT
*
FROM
loyalty_ledger AS ledger
INNER JOIN (SELECT id FROM dead_entries) AS dead_entries
ON ledger.referenceentryid = dead_entries.id AND ledger.dead = FALSE
并且因为PostgreSQL中的CTE已实现且未建立索引。您最好从CTE中删除dead_entries
别名,然后在CTE外部重复。
SELECT
*
FROM
loyalty_ledger AS ledger
INNER JOIN (SELECT
id
FROM
entries
WHERE
subtraction >= addition OR expired = TRUE) AS dead_entries
ON ledger.id = dead_entries.id AND ledger.dead = FALSE
UNION ALL
SELECT
*
FROM
loyalty_ledger AS ledger
INNER JOIN (SELECT
id
FROM
entries
WHERE
subtraction >= addition OR expired = TRUE) AS dead_entries
ON ledger.referenceentryid = dead_entries.id AND ledger.dead = FALSE