我正在开发一个android应用程序。目前,我只能从输入图像中检测轮廓。
我认为问题出在图像预处理上。
我尝试了多种解决方案,但似乎不太起作用的一种解决方案是应用拉普拉斯滤波器,然后应用Canny边缘检测器,但问题是轮廓不完整,这会阻止程序检测形状。
这是我目前正在使用的代码:
Mat mRGBA = new Mat();
Bitmap bmp = BitmapFactory.decodeResource(getResources(), R.drawable.coffret1);
//compress bitmap
bmp = getResizedBitmap(bmp, 500);
Utils.bitmapToMat(bmp, mRGBA);
Mat mGray = new Mat();
// Change the background from white to black, since that will help later to
// extract
// better results during the use of Distance Transform
Mat src = mRGBA.clone();
byte[] srcData = new byte[(int) (src.total() * src.channels())];
src.get(0, 0, srcData);
for (int i = 0; i < src.rows(); i++) {
for (int j = 0; j < src.cols(); j++) {
if (srcData[(i * src.cols() + j) * 3] == (byte) 255 && srcData[(i * src.cols() + j) * 3 + 1] == (byte) 255
&& srcData[(i * src.cols() + j) * 3 + 2] == (byte) 255) {
srcData[(i * src.cols() + j) * 3] = 0;
srcData[(i * src.cols() + j) * 3 + 1] = 0;
srcData[(i * src.cols() + j) * 3 + 2] = 0;
}
}
}
src.put(0, 0, srcData);
// Create a kernel that we will use to sharpen our image
Mat kernel = new Mat(3, 3, CvType.CV_32F);
// an approximation of second derivative, a quite strong kernel
float[] kernelData = new float[(int) (kernel.total() * kernel.channels())];
kernelData[0] = 1; kernelData[1] = 1; kernelData[2] = 1;
kernelData[3] = 1; kernelData[4] = -8; kernelData[5] = 1;
kernelData[6] = 1; kernelData[7] = 1; kernelData[8] = 1;
kernel.put(0, 0, kernelData);
// do the laplacian filtering as it is
// well, we need to convert everything in something more deeper then CV_8U
// because the kernel has some negative values,
// and we can expect in general to have a Laplacian image with negative values
// BUT a 8bits unsigned int (the one we are working with) can contain values
// from 0 to 255
// so the possible negative number will be truncated
Mat imgLaplacian = new Mat();
Imgproc.filter2D(src, imgLaplacian, CvType.CV_32F, kernel);
Mat sharp = new Mat();
src.convertTo(sharp, CvType.CV_32F);
Mat imgResult = new Mat();
Core.subtract(sharp, imgLaplacian, imgResult);
// convert back to 8bits gray scale
imgResult.convertTo(imgResult, CvType.CV_8UC3);
imgLaplacian.convertTo(imgLaplacian, CvType.CV_8UC3);
// Create binary image from source image
Mat bw = new Mat();
Imgproc.cvtColor(imgResult, bw, Imgproc.COLOR_BGR2GRAY);
//Imgproc.threshold(bw, bw, 40, 255, Imgproc.THRESH_BINARY | Imgproc.THRESH_OTSU);
Imgproc.adaptiveThreshold(bw, bw, 255, Imgproc.ADAPTIVE_THRESH_MEAN_C, Imgproc.THRESH_BINARY, 15, 40);
Imgproc.GaussianBlur(bw, bw, new Size(5, 5), 5);
Imgproc.Canny(bw, bw, 80, 300, 3, false);
Mat kernell = Imgproc.getStructuringElement(Imgproc.MORPH_RECT, new Size(7,7));
Imgproc.morphologyEx(bw, bw, Imgproc.MORPH_CLOSE, kernell);
Bitmap bitm = Bitmap.createBitmap(bw.cols(), bw.rows(),Bitmap.Config.ARGB_8888);
Utils.matToBitmap(bw, bitm);
if(bitm!=null){
Toast.makeText(getApplicationContext(), "Bitmap not null", Toast.LENGTH_SHORT).show();
imgView.setImageBitmap(bitm);
}else{
Toast.makeText(getApplicationContext(), "Bitmap null", Toast.LENGTH_SHORT).show();
}
这是原始图片
https://i.imgur.com/JbGoeLl.jpg
这是结果图像
https://i.imgur.com/Y4bNEZg.png
如何解决此问题?谁能修复我的代码?