将ColumnTransformer()结果附加到管道中的原始数据?

时间:2019-02-08 12:06:07

标签: python pandas scikit-learn pipeline

这是我的输入数据:

enter image description here

这是所需的输出,将转换应用于r,f和m列,并将结果附加到原始数据

enter image description here

代码如下:

import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import PowerTransformer    

df = pd.DataFrame(np.random.randint(0,100,size=(10, 3)), columns=list('rfm'))
column_trans = ColumnTransformer(
    [('r_std', StandardScaler(), ['r']),
     ('f_std', StandardScaler(), ['f']),
     ('m_std', StandardScaler(), ['m']),
     ('r_boxcox', PowerTransformer(method='box-cox'), ['r']),
     ('f_boxcox', PowerTransformer(method='box-cox'), ['f']),
     ('m_boxcox', PowerTransformer(method='box-cox'), ['m']),
    ])

transformed = column_trans.fit_transform(df)
new_cols = ['r_std', 'f_std', 'm_std', 'r_boxcox', 'f_boxcox', 'm_boxcox']

transformed_df = pd.DataFrame(transformed, columns=new_cols)
pd.concat([df, transformed_df], axis = 1)

我还需要其他转换器,因此我需要将始发列保留在管道中。有没有更好的方法来解决这个问题?特别是在管道中进行串联和列命名吗?

2 个答案:

答案 0 :(得分:1)

一种方法是使用虚拟转换器,该转换器仅返回转换后的列及其原始值:

import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.compose import ColumnTransformer
from sklearn.preprocessing import PowerTransformer    

np.random.seed(1714)

class NoTransformer(BaseEstimator, TransformerMixin):
    def fit(self, X, y=None):
        return self

    def transform(self, X):
        assert isinstance(X, pd.DataFrame)
        return X

我正在向数据集中添加一个 id 列,因此我可以在ColumnTransformer()中显示 remainder 参数的用法,我发现它非常有用。

df = pd.DataFrame(np.hstack((np.arange(10).reshape((10, 1)),
                             np.random.randint(1,100,size=(10, 3)))),
                  columns=["id"] + list('rfm'))

使用值为 passthrough (默认值为 drop )的 remainder 可以保留未转换的列;来自docs

使用NoTransformer()虚拟类,我们可以将列'r','f','m'转换为具有相同的值。

column_trans = ColumnTransformer(
    [('r_original', NoTransformer(), ['r']),
     ('f_original', NoTransformer(), ['f']),
     ('m_original', NoTransformer(), ['m']),
     ('r_std', StandardScaler(), ['r']),
     ('f_std', StandardScaler(), ['f']),
     ('m_std', StandardScaler(), ['m']),
     ('r_boxcox', PowerTransformer(method='box-cox'), ['r']),
     ('f_boxcox', PowerTransformer(method='box-cox'), ['f']),
     ('m_boxcox', PowerTransformer(method='box-cox'), ['m']),
    ], remainder="passthrough")

要转换更多列的提示:合适的ColumnTransformer()类(在您的情况下为 column_trans )具有一个 transformers _ 方法,可用于访问以编程方式命名['r_std', 'f_std', 'm_std', 'r_boxcox', 'f_boxcox', 'm_boxcox']

column_trans.transformers_

#[('r_original', NoTransformer(), ['r']),
# ('f_original', NoTransformer(), ['f']),
# ('m_original', NoTransformer(), ['m']),
# ('r_std', StandardScaler(copy=True, with_mean=True, with_std=True), ['r']),
# ('f_std', StandardScaler(copy=True, with_mean=True, with_std=True), ['f']),
# ('m_std', StandardScaler(copy=True, with_mean=True, with_std=True), ['m']),
# ('r_boxcox',
#  PowerTransformer(copy=True, method='box-cox', standardize=True),
#  ['r']),
# ('f_boxcox',
#  PowerTransformer(copy=True, method='box-cox', standardize=True),
#  ['f']),
# ('m_boxcox',
#  PowerTransformer(copy=True, method='box-cox', standardize=True),
#  ['m']),
# ('remainder', 'passthrough', [0])]


最后,我认为您的代码可以像这样简化:

column_trans_2 = ColumnTransformer(
    ([
     ('original', NoTransformer(), ['r', 'f', 'm']),
     ('std', StandardScaler(), ['r', 'f', 'm']),
     ('boxcox', PowerTransformer(method='box-cox'), ['r', 'f', 'm']),
    ]), remainder="passthrough")

transformed_2 = column_trans_2.fit_transform(df)
column_trans_2.transformers_

#[('std',
#  StandardScaler(copy=True, with_mean=True, with_std=True),
#  ['r', 'f', 'm']),
# ('boxcox',
#  PowerTransformer(copy=True, method='box-cox', standardize=True),
#  ['r', 'f', 'm'])]

并通过 transformers _ 以编程方式分配列名称:

new_col_names = []
for i in range(len(column_trans_2.transformers)):
    new_col_names += [column_trans_2.transformers[i][0] + '_' + s for s in column_trans_2.transformers[i][2]]
# The non-transformed columns ('id' in this case) will be appended on the right of
# the array and do not show up in the 'transformers_' method.
# Add the id columns to the col_names manually
new_col_names += ['id']

# ['original_r', 'original_f', 'original_m', 'std_r', 'std_f', 'std_m', 'boxcox_r',
#  'boxcox_f', 'boxcox_m', 'id']


pd.DataFrame(transformed_2, columns=new_col_names)

答案 1 :(得分:0)

是的,有一种方法可以做到这一点,幸运地包含在 SKLearn 中。在 ColumnTransformer 的原始文档中,您可以找到令人困惑但有用的一行,如下所示:

<块引用>

transformer{‘drop’, ‘passthrough’} 或 estimator

估算器必须支持拟合和变换。也接受特殊大小写的字符串 ‘drop’ 和 ‘passthrough’,分别表示删除列或通过未转换的列。

这意味着如果您想在 ColumnTransformer 期间保留一列或在 ColumnTransformer 期间删除一列,您只需使用两个特殊大小写的字符串之一来指示它,就像这样:< /p>

column_trans = ColumnTransformer(
[('r_std', StandardScaler(), ['r']),
 ('f_std', StandardScaler(), ['f']),
 ('m_std', StandardScaler(), ['m']),
 ('r_boxcox', PowerTransformer(method='box-cox'), ['r']),
 ('f_boxcox', PowerTransformer(method='box-cox'), ['f']),
 ('m_boxcox', PowerTransformer(method='box-cox'), ['m']),
 ('col_keep', 'passthrough', ['r','f','m'])
])

如果您随后使用 ColumnTransformer,那 3 列将被保留并且不会被删除。或者,如果您使用 'drop' 而不是 'passthrough',您可以有选择地删除某些列。这与 remainder='passthrough' 结合使用将允许您删除一些列并保留所有其他列。我希望你觉得这有用!