我正在从csv文件读取数据。如果我的功能是分类的,则可以使用以下代码对分类变量进行热编码。
import tensorflow as tf
import tensorflow.feature_column as fc
import pandas as pd
PATH = "/tmp/sample.csv"
tf.enable_eager_execution()
COLUMNS = ['education','label']
train_df = pd.read_csv(PATH, header=None, names = COLUMNS)
train_df['education'] = train_df['education'].str.split(" ").astype(str)
def easy_input_function(df, label_key, num_epochs, shuffle, batch_size):
label = df[label_key]
#ed = tf.string_split(df['education']," ")
#df['education'] = ed
ds = tf.data.Dataset.from_tensor_slices((dict(df),label))
if shuffle:
ds = ds.shuffle(10000)
ds = ds.batch(batch_size).repeat(num_epochs)
return ds
ds = easy_input_function(train_df, label_key='label', num_epochs=5, shuffle=False, batch_size=5)
for feature_batch, label_batch in ds.take(1):
print('Some feature keys:', list(feature_batch.keys())[:5])
print()
print('A batch of education :', feature_batch['education'])
print()
print('A batch of Labels:', label_batch )
print(feature_batch)
education_vocabulary_list = [
'Bachelors', 'HS-grad', '11th', 'Masters', '9th', 'Some-college',
'Assoc-acdm', 'Assoc-voc', '7th-8th', 'Doctorate', 'Prof-school',
'5th-6th', '10th', '1st-4th', 'Preschool', '12th']
education = tf.feature_column.categorical_column_with_vocabulary_list('education', vocabulary_list=education_vocabulary_list)
fc.input_layer(feature_batch, [fc.indicator_column(education)])
我的sample.csv文件数据看起来像
Bachelors,1
HS-grad,0
但是当我在分类特征中有多个值时,上面的代码无法对数据进行多热编码。
说我的sample.csv就像
Bachelors HS-grad,1
HS-grad,0
任何人都应该了解如何将变量读取或放入csv文件中,以便能够在模型中对其进行多热编码。