我正在尝试使用不使用任何库(numpy
除外)的Python创建简单的线性模型。这就是我所拥有的
import numpy as np
import pandas
np.random.seed(1)
alpha = 0.1
def h(x, w):
return np.dot(w.T, x)
def cost(X, W, Y):
totalCost = 0
for i in range(47):
diff = h(X[i], W) - Y[i]
squared = diff * diff
totalCost += squared
return totalCost / 2
housing_data = np.loadtxt('Housing.csv', delimiter=',')
x1 = housing_data[:,0]
x2 = housing_data[:,1]
y = housing_data[:,2]
avgX1 = np.mean(x1)
stdX1 = np.std(x1)
normX1 = (x1 - avgX1) / stdX1
print('avgX1', avgX1)
print('stdX1', stdX1)
avgX2 = np.mean(x2)
stdX2 = np.std(x2)
normX2 = (x2 - avgX2) / stdX2
print('avgX2', avgX2)
print('stdX2', stdX2)
normalizedX = np.ones((47, 3))
normalizedX[:,1] = normX1
normalizedX[:,2] = normX2
np.savetxt('normalizedX.csv', normalizedX)
weights = np.ones((3,))
for boom in range(100):
currentCost = cost(normalizedX, weights, y)
if boom % 1 == 0:
print(boom, 'iteration', weights[0], weights[1], weights[2])
print('Cost', currentCost)
for i in range(47):
errorDiff = h(normalizedX[i], weights) - y[i]
weights[0] = weights[0] - alpha * (errorDiff) * normalizedX[i][0]
weights[1] = weights[1] - alpha * (errorDiff) * normalizedX[i][1]
weights[2] = weights[2] - alpha * (errorDiff) * normalizedX[i][2]
print(weights)
predictedX = [1, (2100 - avgX1) / stdX1, (3 - avgX2) / stdX2]
firstPrediction = np.array(predictedX)
print('firstPrediction', firstPrediction)
firstPrediction = h(firstPrediction, weights)
print(firstPrediction)
首先,它会很快收敛。仅经过14次迭代。其次,它给我的结果不同于使用sklearn
进行线性回归的结果。供参考,我的sklearn
代码为:
import numpy
import matplotlib.pyplot as plot
import pandas
import sklearn
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
dataset = pandas.read_csv('Housing.csv', header=None)
x = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 2].values
linearRegressor = LinearRegression()
xnorm = sklearn.preprocessing.scale(x)
scaleCoef = sklearn.preprocessing.StandardScaler().fit(x)
mean = scaleCoef.mean_
std = numpy.sqrt(scaleCoef.var_)
print('stf')
print(std)
stuff = linearRegressor.fit(xnorm, y)
predictedX = [[(2100 - mean[0]) / std[0], (3 - mean[1]) / std[1]]]
yPrediction = linearRegressor.predict(predictedX)
print('predictedX', predictedX)
print('predict', yPrediction)
print(stuff.coef_, stuff.intercept_)
我的自定义模型预测y值为337,000,sklearn预测为355,000。我的数据是47行,看起来像
2104,3,3.999e+05
1600,3,3.299e+05
2400,3,3.69e+05
1416,2,2.32e+05
3000,4,5.399e+05
1985,4,2.999e+05
1534,3,3.149e+05
可访问https://github.com/shamoons/linear-logistic-regression/blob/master/Housing.csv
的完整数据我认为(a)我的梯度下降回归法不正确,或者(b)我没有正确使用sklearn
。
为什么2不能为给定输入预测相同的输出?
答案 0 :(得分:3)
我认为您在梯度下降中缺少1 / m项(其中m是y的大小)。包括1 / m项之后,我似乎得到了与您的sklearn代码相似的预测值。
见下文
....
weights = np.ones((3,))
m = y.size
for boom in range(100):
currentCost = cost(normalizedX, weights, y)
if boom % 1 == 0:
print(boom, 'iteration', weights[0], weights[1], weights[2])
print('Cost', currentCost)
for i in range(47):
errorDiff = h(normalizedX[i], weights) - y[i]
weights[0] = weights[0] - alpha *(1/m)* (errorDiff) * normalizedX[i][0]
weights[1] = weights[1] - alpha *(1/m)* (errorDiff) * normalizedX[i][1]
weights[2] = weights[2] - alpha *(1/m)* (errorDiff) * normalizedX[i][2]
...
这给出的第一个预测是355242。
这与线性回归模型非常吻合,即使它没有进行梯度下降。
我还在sklearn中尝试了sgdregressor(使用随机梯度下降),它似乎也获得了接近线性回归模型和您的模型的值。参见下面的代码
import numpy
import matplotlib.pyplot as plot
import pandas
import sklearn
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression, SGDRegressor
dataset = pandas.read_csv('Housing.csv', header=None)
x = dataset.iloc[:, :-1].values
y = dataset.iloc[:, 2].values
sgdRegressor = SGDRegressor(penalty='none', learning_rate='constant', eta0=0.1, max_iter=1000, tol = 1E-6)
xnorm = sklearn.preprocessing.scale(x)
scaleCoef = sklearn.preprocessing.StandardScaler().fit(x)
mean = scaleCoef.mean_
std = numpy.sqrt(scaleCoef.var_)
print('stf')
print(std)
yPrediction = []
predictedX = [[(2100 - mean[0]) / std[0], (3 - mean[1]) / std[1]]]
print('predictedX', predictedX)
for trials in range(10):
stuff = sgdRegressor.fit(xnorm, y)
yPrediction.extend(sgdRegressor.predict(predictedX))
print('predict', np.mean(yPrediction))
结果
predict 355533.10119985335