Sklearn指标值与Keras值有很大不同

时间:2019-02-07 19:16:30

标签: machine-learning keras scikit-learn neural-network lstm

我需要一些帮助,以便了解在Keras中拟合模型时如何计算准确性。 这是训练模型的示例历史记录:

Train on 340 samples, validate on 60 samples
Epoch 1/100
340/340 [==============================] - 5s 13ms/step - loss: 0.8081 - acc: 0.7559 - val_loss: 0.1393 - val_acc: 1.0000
Epoch 2/100
340/340 [==============================] - 3s 9ms/step - loss: 0.7815 - acc: 0.7647 - val_loss: 0.1367 - val_acc: 1.0000
Epoch 3/100
340/340 [==============================] - 3s 10ms/step - loss: 0.8042 - acc: 0.7706 - val_loss: 0.1370 - val_acc: 1.0000
...
Epoch 25/100
340/340 [==============================] - 3s 9ms/step - loss: 0.6006 - acc: 0.8029 - val_loss: 0.2418 - val_acc: 0.9333
Epoch 26/100
340/340 [==============================] - 3s 9ms/step - loss: 0.5799 - acc: 0.8235 - val_loss: 0.3004 - val_acc: 0.8833

那么,在最初的几个阶段中验证准确性为1?验证精度如何比训练精度更好?

这些数字显示了准确性和损失的所有值:

enter image description here

enter image description here

然后我使用sklearn指标评估最终结果:

def evaluate(predicted_outcome, expected_outcome):
    f1_score = metrics.f1_score(expected_outcome, predicted_outcome, average='weighted')
    balanced_accuracy_score = metrics.balanced_accuracy_score(expected_outcome, predicted_outcome)
    print('****************************')
    print('| MODEL PERFORMANCE REPORT |')
    print('****************************')
    print('Average F1 score = {:0.2f}.'.format(f1_score))
    print('Balanced accuracy score = {:0.2f}.'.format(balanced_accuracy_score))
    print('Confusion matrix')
    print(metrics.confusion_matrix(expected_outcome, predicted_outcome))
    print('Other metrics')
    print(metrics.classification_report(expected_outcome, predicted_outcome))

我得到以下输出(如您所见,结果很糟糕):

****************************
| MODEL PERFORMANCE REPORT |
****************************
Average F1 score = 0.25.
Balanced accuracy score = 0.32.
Confusion matrix
[[  7  24   2  40]
 [ 11  70   4 269]
 [  0   0   0  48]
 [  0   0   0   6]]
Other metrics
              precision    recall  f1-score   support

           0       0.39      0.10      0.15        73
           1       0.74      0.20      0.31       354
           2       0.00      0.00      0.00        48
           3       0.02      1.00      0.03         6

   micro avg       0.17      0.17      0.17       481
   macro avg       0.29      0.32      0.12       481
weighted avg       0.61      0.17      0.25       481

为什么Keras拟合函数的准确性和损失值与sklearn指标的值如此不同?

这是我的模型,以防万一:

model = Sequential()

model.add(LSTM(
                units=100, # the number of hidden states
                return_sequences=True, 
                input_shape=(timestamps,nb_features),
                dropout=0.2, 
                recurrent_dropout=0.2
              )
         )

model.add(Dropout(0.2))

model.add(Flatten())

model.add(Dense(units=nb_classes,
               activation='softmax'))

model.compile(loss="categorical_crossentropy",
              metrics = ['accuracy'],
              optimizer='adadelta')

输入数据尺寸:

400 train sequences
481 test sequences
X_train shape: (400, 20, 17)
X_test shape: (481, 20, 17)
y_train shape: (400, 4)
y_test shape: (481, 4)

这是我应用sklearn指标的方式:

testPredict = model.predict(np.array(X_test))
y_test = np.argmax(y_test.values, axis=1)
y_pred = np.argmax(testPredict, axis=1)
evaluate(y_pred, y_test)

我似乎错过了一些东西。

1 个答案:

答案 0 :(得分:1)

您听起来有些困惑。

首先,您将苹果与桔子进行比较,即Keras在60个样本集上报告的 validation 准确性(请注意,Keras打印的第一条信息性消息是Train on 340 samples, validate on 60 samples) scikit-learn在您的481个样本测试集上报告的 test 准确性。

第二,仅60个样本的验证集太小;在这么小的样本中,计算得出的指标(例如您报告的指标)的剧烈波动肯定不是意外的(这是我们需要足够大小的数据集的原因,而不仅仅是 training 个原因)。

第三,至少可以说,您的训练/验证/测试集划分非常不寻常;标准做法要求分配大约70/15/15%或类似的费用,而您使用的分配是38/7/55%(即340/60/481样本)...

最后,在不知道数据详细信息的情况下,很可能只有340个样本不足以适合您这样的LSTM模型,从而无法完成4类分类任务。

对于初学者,首先将数据更适当地分配到训练/验证/测试集中,并确保将苹果与苹果进行比较...

PS在类似的问题中,您还应该包括model.fit()部分。