我有以下dataframe
,它是for循环的输出之一。
df = pd.DataFrame()
df['Score'] = [['0-0','1-1','2-2'],['0-0','1-1','2-2']]
df ['value'] =[[0.08,0.1,0.15],[0.07,0.12,0.06]]
df ['Team'] = ['A','B']
我想将每行列表的每个元素转换为一列的每个元素。 以下是预期的输出。
有人可以帮助我进行变革吗?
谢谢
Zep
答案 0 :(得分:2)
r
输出:
import pandas as pd
import numpy as np
x = [['0-0','1-1','2-2'],['0-0','1-1','2-2']]
y = [[0.08,0.1,0.15],[0.07,0.12,0.06]]
z = ['A','B']
df = pd.DataFrame()
df['Score'] = np.concatenate(x)
df ['value'] = np.concatenate(y)
df['Team'] = np.repeat(z, len(df)/len(z))
print(df)
答案 1 :(得分:1)
您首先需要压平ist,可以使用itertools.chain
:
from itertools import chain
score = list(chain(*[['0-0','1-1','2-2'],['0-0','1-1','2-2']]))
value = list(chain(*[[0.08,0.1,0.15],[0.07,0.12,0.06]]))
pd.DataFrame({'score':score, 'value':value})
Score value
0 0-0 0.08
1 1-1 0.10
2 2-2 0.15
3 0-0 0.07
4 1-1 0.12
5 2-2 0.06
答案 2 :(得分:1)
您可以使用chain.from_iterable来使输入变平:
from itertools import chain
import pandas as pd
data = [['0-0','1-1','2-2'],['0-0','1-1','2-2']]
values = [[0.08,0.1,0.15],[0.07,0.12,0.06]]
df = pd.DataFrame(data=list(zip(chain.from_iterable(data), chain.from_iterable(values))), columns=['score', 'value'])
print(df)
输出
score value
0 0-0 0.08
1 1-1 0.10
2 2-2 0.15
3 0-0 0.07
4 1-1 0.12
5 2-2 0.06
您也可以使用np.ravel:
import numpy as np
import pandas as pd
data = [['0-0', '1-1', '2-2'], ['0-0', '1-1', '2-2']]
values = [[0.08, 0.1, 0.15], [0.07, 0.12, 0.06]]
df = pd.DataFrame({'score': np.array(data).ravel(), 'value': np.array(values).ravel()})
print(df)
答案 3 :(得分:1)
在每个数据帧列表上应用pd.Series
后,您可以尝试一次取消索引堆积
df = pd.DataFrame()
df['Score'] = [['0-0','1-1','2-2'],['0-0','1-1','2-2']]
df ['value'] =[[0.08,0.1,0.15],[0.07,0.12,0.06]]
df.stack().apply(pd.Series).ffill(1).unstack(level=0).T.reset_index(drop=True)
出局:
Score value Team
0 0-0 0.08 A
1 0-0 0.07 B
2 1-1 0.1 A
3 1-1 0.12 B
4 2-2 0.15 A
5 2-2 0.06 B