德鲁伊将0或0.0存储为空值

时间:2019-02-07 13:56:52

标签: apache-kafka druid superset apache-superset data-ingestion

来自HDP-2.6.5.0的

版本德鲁伊.10.1 我们正在使用druid-kafka索引器服务提取,将数据从kafka主题加载到druid中,在此期间,我们发现druid将具有0或0.0的度量值存储为null并通过超集或Druid api进行检索得到的响应为空。如果我们在这里缺少任何东西,则需要建议。

超集错误:

with cte as ( select max(case when a is not null then date end) as date_a , max(case when b is not null then date end) as date_b , max(case when c is not null then date end) as date_c , max(case when d is not null then date end) as date_d from t ) select max(date) as date , min(case when date = date_a then a end) as a , min(case when date = date_b then b end) as b , min(case when date = date_c then c end) as c , min(case when date = date_d then d end) as d from t cross join cte

以下提取规范文件:

{"status": "failed",  "error_type": "warning", "error": "unsupported operand type(s) for +: 'int' and 'NoneType'"}

使用了来自德鲁伊的其他api: http://host:port/druid/v2?pretty

正文:

{
    "type": "kafka",
    "dataSchema": {
        "dataSource": "data-source",
        "parser": {
            "type": "string",
            "parseSpec": {
                "format": "json",
                "timestampSpec": {
                    "column": "datetime",
                    "format": "YYYYMMdd_HHmmss"
                },
                "columns": [
                    "created_date",
                    "s_type",
                    "datetime",
                    "ds_ser",
                    "ven",
                    "cou_name",
                    "c_name",
                    "d_name",
                    "dv_name",
                    "p_name",
                    "redTime",
                    "wrTime",
                    "tRate",
                    "MTRate"
                ],
                "dimensionsSpec": {
                    "dimensions": [
                        "created_date",
                    "s_type",
                    "datetime",
                    "ds_ser",
                    "ven",
                    "cou_name",
                    "c_name",
                    "d_name",
                    "dv_name",
                    "p_name",
                    ]
                }
            }
        },
        "metricsSpec": [{
            "name": "count",
            "type": "count"
        },
            {
                "type": "doubleMax",
                "name": "redTime",
                "fieldName": "redTime"
            },
            {
                "type": "doubleMax",
                "name": "wrTime",
                "fieldName": "wrTime"
            },
            {
                "type": "longMax",
                "name": "tRate",
                "fieldName": "tRate"
            },
            {
                "type": "longMax",
                "name": "MTRate",
                "fieldName": "MTRate"
            }
        ],
        "granularitySpec": {
            "type": "uniform",
            "segmentGranularity": "HOUR",
            "queryGranularity": "NONE"
        }
    },
    "tuningConfig": {
        "type": "kafka",
        "maxRowsPerSegment": 5000000
    },
    "ioConfig": {
        "topic": "ptopic",
        "useEarliestOffset": "true",
        "consumerProperties": {
            "bootstrap.servers": "host:port"
        },
        "taskCount": 1,
        "replicas": 1,
        "taskDuration": "PT5M"
    }
}

德鲁伊的回应:

{
    "queryType": "groupBy",
    "dataSource": "data-source",
    "granularity": "all",
    "dimensions": ["ds_ser"],
    "aggregations": [
        {"type": "doubleMax", "name": "redTime", "redTime": "writeresponsetime"},
        {"type": "doubleMax", "name": "wrTime", "wrTime": "totalResponseTime"},
        {"type": "longMax", "name": "tRate", "fieldName": "tRate"},
        {"type": "longMax", "name": "MTRate", "MTRate": "MaxTransferRate"}

    ],
    "intervals": ["2019-01-02T00:00/2019-01-02T23:59"]
}

卡夫卡中的数据:

[
    {
        "version": "v1",
        "timestamp": "2019-01-02T00:00:00.000Z",
        "event": {
            "redTime": null,
            "ds_ser": "240163",
            "wrTime": null,
            "tRate": null,
            "MTRate": null
        }
    },
    {
        "version": "v1",
        "timestamp": "2019-01-02T00:00:00.000Z",
        "event": {
            "redTime": null,
            "ds_ser": "443548",
            "wrTime": null,
            "tRate": 0,
            "MTRate": null
        }
    }
]

1 个答案:

答案 0 :(得分:0)

好吧,我已经找到了自己的问题的答案。

  

在准备德鲁伊kafka inderex json时我做错了。我不知道该字段是否区分大小写。这里发布的json片段是一个组成部分,因此字段名称是匹配的,但是在我的实际生产代码和json文件中,这些字段不匹配,因此druid将这些字段假定为新字段,并在摄取它们时将其值分配为null。下面的示例:

Kafka Json:

  

{"created_date":"2019-02-03T18:35:59.514Z","s_type":"BLOCK","datetime":"20181121_070000","ds_ser":"443551","ven":"abc","cou_name":"USA","c_name":"Piscataway","d_name":"Piscataway","dv_name":"USPSCG","p_name":"443551-CK","redTime":0.0,"wrTime":0.0,"tRate":0,"MTRate":0}

德鲁伊索引器json列如下:

  

"columns": [ "created_date", "s_type", "datetime", "ds_ser", "ven", "cou_name", "c_name", "d_name", "dv_name", "p_name", "redTime", "wrtime", "trate", "MTRate" ],

如果我们在上面观察到,wrTime --> wrtimetRate --> trate中存在不匹配。所以对我来说,这是根本原因,解决名称后,德鲁伊开始吸收适当的值。