我正在使用spark 2.2.0进行ETL处理,而mlllib StringIndexer在拟合步骤期间产生了看不见的标签异常(在整个数据集上,没有训练/测试拆分)。
Here我找到了一个解决方案df.cache(),适用于我使用数据样本的情况,但我认为这是整个数据集上脚本执行速度慢(近20小时)的主要原因。
basket = basket.cache()
from pyspark.ml.feature import StringIndexer
stringIndexer = StringIndexer(inputCol="product_code", outputCol="product_code_ind")
indexer = stringIndexer.fit(basket)
basket = indexer.transform(basket)
设置参数handleInvalid = 'keep'
预期会产生空白帧。
据我所知,StringIndexer可以适合不同的执行器,有时每个执行器可以具有唯一的标签,有没有一种方法可以将StringIndexerModel广播给每个执行器,而无需缓存我的所有数据?
这是我的堆栈跟踪:
org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 33.0 failed 4 times, most recent failure: Lost task 0.3 in stage 33.0 (TID 516, ...., executor 0): org.apache.spark.SparkException: Failed to execute user defined function($anonfun$5: (string) => double)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.agg_doAggregateWithKeys$(Unknown Source)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:395)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:125)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:108)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.SparkException: Unseen label: 169573. To handle unseen labels, set Param handleInvalid to keep.
at org.apache.spark.ml.feature.StringIndexerModel$$anonfun$5.apply(StringIndexer.scala:222)
at org.apache.spark.ml.feature.StringIndexerModel$$anonfun$5.apply(StringIndexer.scala:208)
... 13 more
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1499)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1487)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1486)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1486)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
at scala.Option.foreach(Option.scala:257)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:814)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1714)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1669)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1658)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:630)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2022)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2043)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2062)
at org.apache.spark.api.python.PythonRDD$.runJob(PythonRDD.scala:446)
at org.apache.spark.api.python.PythonRDD.runJob(PythonRDD.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:280)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:214)
at java.lang.Thread.run(Thread.java:748)
Caused by: org.apache.spark.SparkException: Failed to execute user defined function($anonfun$5: (string) => double)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.agg_doAggregateWithKeys$(Unknown Source)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIterator.processNext(Unknown Source)
at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$8$$anon$1.hasNext(WholeStageCodegenExec.scala:395)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:125)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:96)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:53)
at org.apache.spark.scheduler.Task.run(Task.scala:108)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
... 1 more
Caused by: org.apache.spark.SparkException: Unseen label: 169573. To handle unseen labels, set Param handleInvalid to keep.
at org.apache.spark.ml.feature.StringIndexerModel$$anonfun$5.apply(StringIndexer.scala:222)
at org.apache.spark.ml.feature.StringIndexerModel$$anonfun$5.apply(StringIndexer.scala:208)
... 13 more