Tensorflow抱怨没有检测到具有CUDA功能的设备

时间:2019-02-07 06:21:40

标签: tensorflow cuda ubuntu-18.04

我正在尝试运行一些Tensorflow代码,但出现了似乎是一个常见问题:

$ LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64 python -c "import tensorflow; tensorflow.Session()"
2019-02-06 20:36:15.903204: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2019-02-06 20:36:15.908809: E tensorflow/stream_executor/cuda/cuda_driver.cc:300] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected
2019-02-06 20:36:15.908858: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:163] retrieving CUDA diagnostic information for host: tigris
2019-02-06 20:36:15.908868: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:170] hostname: tigris
2019-02-06 20:36:15.908942: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:194] libcuda reported version is: 390.77.0
2019-02-06 20:36:15.908985: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:198] kernel reported version is: 390.30.0
2019-02-06 20:36:15.909006: E tensorflow/stream_executor/cuda/cuda_diagnostics.cc:308] kernel version 390.30.0 does not match DSO version 390.77.0 -- cannot find working devices in this configuration
$

该错误消息的关键部分似乎是:

[...] libcuda reported version is: 390.77.0
[...] kernel reported version is: 390.30.0
[...] kernel version 390.30.0 does not match DSO version 390.77.0 -- cannot find working devices in this configuration

如何安装兼容版本? libcuda版本从哪里来?

背景

几个月前,我尝试安装具有GPU支持的Tensorflow,但是这些版本可能无法显示或无法与Tensorflow一起使用。最后,我遵循tutorial的有关如何在同一台计算机上安装CUDA库的多个版本的方法来工作。那在当时是可行的,但是几个月后我回到该项目时,它已经停止工作。我认为那段时间已经升级了一些驱动程序。

调查

我尝试做的第一件事是查看我具有nvidia驱动程序和libcuda软件包的版本。

$ dpkg --list|grep libcuda
ii  libcuda1-390                                                390.30-0ubuntu1                              amd64        NVIDIA CUDA runtime library

看起来是390.30。为什么错误消息说libcuda报告390.77?

$ dpkg --list|grep nvidia
ii  libnvidia-container-tools                                   1.0.1-1                                      amd64        NVIDIA container runtime library (command-line tools)
ii  libnvidia-container1:amd64                                  1.0.1-1                                      amd64        NVIDIA container runtime library
rc  nvidia-384                                                  384.130-0ubuntu0.16.04.1                     amd64        NVIDIA binary driver - version 384.130
ii  nvidia-390                                                  390.30-0ubuntu1                              amd64        NVIDIA binary driver - version 390.30
ii  nvidia-390-dev                                              390.30-0ubuntu1                              amd64        NVIDIA binary Xorg driver development files
rc  nvidia-396                                                  396.44-0ubuntu1                              amd64        NVIDIA binary driver - version 396.44
ii  nvidia-container-runtime                                    2.0.0+docker18.09.1-1                        amd64        NVIDIA container runtime
ii  nvidia-container-runtime-hook                               1.4.0-1                                      amd64        NVIDIA container runtime hook
ii  nvidia-docker2                                              2.0.3+docker18.09.1-1                        all          nvidia-docker CLI wrapper
ii  nvidia-modprobe                                             390.30-0ubuntu1                              amd64        Load the NVIDIA kernel driver and create device files
rc  nvidia-opencl-icd-384                                       384.130-0ubuntu0.16.04.1                     amd64        NVIDIA OpenCL ICD
ii  nvidia-opencl-icd-390                                       390.30-0ubuntu1                              amd64        NVIDIA OpenCL ICD
rc  nvidia-opencl-icd-396                                       396.44-0ubuntu1                              amd64        NVIDIA OpenCL ICD
ii  nvidia-prime                                                0.8.8.2                                      all          Tools to enable NVIDIA's Prime
ii  nvidia-settings                                             396.44-0ubuntu1                              amd64        Tool for configuring the NVIDIA graphics driver

再次,一切看起来像是390.30。有些软件包的版本为390.77,但它们的状态为rc。我猜我安装了该版本,后来又删除了它,因此配置文件被遗忘了。我使用以下命令清除了配置文件:

sudo apt-get remove --purge nvidia-kernel-common-390

现在,版本390.77完全没有软件包。

$ dpkg --list|grep 390.77
$

我尝试重新安装CUDA,以查看其是否使用错误的版本进行编译。

$ sudo sh cuda_9.0.176_384.81_linux.run --silent --toolkit --toolkitpath=/usr/local/cuda-9.0 --override

那没什么区别。

最后,我尝试运行nvidia-smi。

$ LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64 nvidia-smi
Failed to initialize NVML: Driver/library version mismatch
$

所有这些都在带有Python 3.6.7的Ubuntu 18.04上运行,我的图形卡是NVIDIA Corporation GM107M [GeForce GTX 960M](rev a2)。

1 个答案:

答案 0 :(得分:-2)

我终于想到了要搜索名称为390.77的任何文件。

$ locate 390.77
/usr/lib/i386-linux-gnu/libcuda.so.390.77
/usr/lib/i386-linux-gnu/libnvcuvid.so.390.77
/usr/lib/i386-linux-gnu/libnvidia-compiler.so.390.77
/usr/lib/i386-linux-gnu/libnvidia-encode.so.390.77
/usr/lib/i386-linux-gnu/libnvidia-fatbinaryloader.so.390.77
/usr/lib/i386-linux-gnu/libnvidia-ml.so.390.77
/usr/lib/i386-linux-gnu/libnvidia-opencl.so.390.77
/usr/lib/i386-linux-gnu/libnvidia-ptxjitcompiler.so.390.77
/usr/lib/i386-linux-gnu/vdpau/libvdpau_nvidia.so.390.77
/usr/lib/x86_64-linux-gnu/libcuda.so.390.77
/usr/lib/x86_64-linux-gnu/libnvcuvid.so.390.77
/usr/lib/x86_64-linux-gnu/libnvidia-compiler.so.390.77
/usr/lib/x86_64-linux-gnu/libnvidia-encode.so.390.77
/usr/lib/x86_64-linux-gnu/libnvidia-fatbinaryloader.so.390.77
/usr/lib/x86_64-linux-gnu/libnvidia-ml.so.390.77
/usr/lib/x86_64-linux-gnu/libnvidia-opencl.so.390.77
/usr/lib/x86_64-linux-gnu/libnvidia-ptxjitcompiler.so.390.77
/usr/lib/x86_64-linux-gnu/vdpau/libvdpau_nvidia.so.390.77

就这样!仔细观察表明,我一定已经安装了新版本。

$ ls /usr/lib/i386-linux-gnu/libcuda* -l
lrwxrwxrwx 1 root root      12 Nov  8 13:58 /usr/lib/i386-linux-gnu/libcuda.so -> libcuda.so.1
lrwxrwxrwx 1 root root      17 Nov 12 14:04 /usr/lib/i386-linux-gnu/libcuda.so.1 -> libcuda.so.390.77
-rw-r--r-- 1 root root 9179124 Jan 31  2018 /usr/lib/i386-linux-gnu/libcuda.so.390.30
-rw-r--r-- 1 root root 9179796 Jul 10  2018 /usr/lib/i386-linux-gnu/libcuda.so.390.77

它们来自哪里?

$ dpkg -S /usr/lib/i386-linux-gnu/libcuda.so.390.30
libcuda1-390: /usr/lib/i386-linux-gnu/libcuda.so.390.30
$ dpkg -S /usr/lib/i386-linux-gnu/libcuda.so.390.77
dpkg-query: no path found matching pattern /usr/lib/i386-linux-gnu/libcuda.so.390.77

因此390.77不再属于任何程序包。也许我安装了旧版本并不得不强迫它覆盖链接。

我的计划是删除文件,然后重新安装软件包以设置指向正确版本的链接。那我需要重新安装哪些软件包?

$ locate 390.77|sed -e 's/390.77/390.30/'|xargs dpkg -S

某些文件不匹配任何文件,但匹配的文件来自以下软件包:

  • libcuda1-390
  • nvidia-opencl-icd-390

我不由自主地删除了390.77版文件。

locate 390.77|sudo xargs rm

然后我重新安装软件包。

sudo apt-get install --reinstall libcuda1-390 nvidia-opencl-icd-390

终于可以了!

$ LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64 python -c "import tensorflow; tensorflow.Session()"
2019-02-06 22:13:59.460822: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2019-02-06 22:13:59.665756: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:964] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2019-02-06 22:13:59.666205: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1432] Found device 0 with properties: 
name: GeForce GTX 960M major: 5 minor: 0 memoryClockRate(GHz): 1.176
pciBusID: 0000:01:00.0
totalMemory: 3.95GiB freeMemory: 3.81GiB
2019-02-06 22:13:59.666226: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1511] Adding visible gpu devices: 0
2019-02-06 22:17:21.254445: I tensorflow/core/common_runtime/gpu/gpu_device.cc:982] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-02-06 22:17:21.254489: I tensorflow/core/common_runtime/gpu/gpu_device.cc:988]      0 
2019-02-06 22:17:21.254496: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 0:   N 
2019-02-06 22:17:21.290992: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 3539 MB memory) -> physical GPU (device: 0, name: GeForce GTX 960M, pci bus id: 0000:01:00.0, compute capability: 5.0)

nvidia-smi现在也可以使用。

$ LD_LIBRARY_PATH=/usr/local/cuda-9.0/lib64 nvidia-smi
Wed Feb  6 22:19:24 2019       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 390.30                 Driver Version: 390.30                    |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  GeForce GTX 960M    Off  | 00000000:01:00.0 Off |                  N/A |
| N/A   45C    P8    N/A /  N/A |    113MiB /  4046MiB |      6%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|    0      3212      G   /usr/lib/xorg/Xorg                           113MiB |
+-----------------------------------------------------------------------------+

我重新启动,视频驱动程序继续工作。哇!