尝试使用3D绘图(绘图)对K-means聚类的结果进行绘图。当我使用以下代码时,HTML中会生成一个空白图。我打印了变量散布1,2,3,还显示了群集1,2,3和值。是否有类似matplotlib中的plt.show()来在图中显示值?
import pandas as pd
import numpy as np
import argparse
import json
import re
import os
import sys
import plotly
import plotly.graph_objs as go
cluster1=df.loc[df['y'] == 0]
cluster2=df.loc[df['y'] == 1]
cluster3=df.loc[df['y'] == 2]
scatter1 = dict(
mode = "markers",
name = "Cluster 1",
type = "scatter3d",
x = cluster1.as_matrix()[:,0], y = cluster1.as_matrix()[:,1], z = cluster1.as_matrix()[:,2],
marker = dict( size=2, color='green')
)
scatter2 = dict(
mode = "markers",
name = "Cluster 2",
type = "scatter3d",
x = cluster2.as_matrix()[:,0], y = cluster2.as_matrix()[:,1], z = cluster2.as_matrix()[:,2],
marker = dict( size=2, color='blue')
)
scatter3 = dict(
mode = "markers",
name = "Cluster 3",
type = "scatter3d",
x = cluster3.as_matrix()[:,0], y = cluster3.as_matrix()[:,1], z = cluster3.as_matrix()[:,2],
marker = dict( size=2, color='red')
)
cluster1 = dict(
alphahull = 5,
name = "Cluster 1",
opacity = .1,
type = "mesh3d",
x = cluster1.as_matrix()[:,0], y = cluster1.as_matrix()[:,1], z = cluster1.as_matrix()[:,2],
color='green', showscale = True
)
cluster2 = dict(
alphahull = 5,
name = "Cluster 2",
opacity = .1,
type = "mesh3d",
x = cluster2.as_matrix()[:,0], y = cluster2.as_matrix()[:,1], z = cluster2.as_matrix()[:,2],
color='blue', showscale = True
)
cluster3 = dict(
alphahull = 5,
name = "Cluster 3",
opacity = .1,
type = "mesh3d",
x = cluster3.as_matrix()[:,0], y = cluster3.as_matrix()[:,1], z = cluster3.as_matrix()[:,2],
color='red', showscale = True
)
layout = dict(
title = 'Interactive Cluster Shapes in 3D',
scene = dict(
xaxis = dict(zeroline=True ),
yaxis = dict(zeroline=True ),
zaxis = dict(zeroline=True ),
)
)
fig = dict(data=[scatter1, scatter2, scatter3, cluster1, cluster2, cluster3], layout=layout )
# Use py.iplot() for IPython notebook
plotly.offline.iplot(fig, filename='mesh3d_sample.html')
#py.iplot(fig, filename='mesh3d_sample')