我正在从kafka播放火花。我想将rdd从kafka转换为dataframe。 我正在使用以下方法。 val ssc = new StreamingContext(“ local [*]”,“ KafkaExample”,Seconds(4))
val kafkaParams = Map[String, Object](
"bootstrap.servers" -> "dofff2.dl.uk.feefr.com:8002",
"security.protocol" -> "SASL_PLAINTEXT",
"key.deserializer" -> classOf[StringDeserializer],
"value.deserializer" -> classOf[StringDeserializer],
"group.id" -> "1",
"auto.offset.reset" -> "latest",
"enable.auto.commit" -> (false: java.lang.Boolean)
)
val topics = Array("csv")
val stream = KafkaUtils.createDirectStream[String, String](
ssc,
PreferConsistent,
Subscribe[String, String](topics, kafkaParams)
)
val strmk = stream.map(record => (record.value))
val rdd1 = strmk.map(line => line.split(',')).map(s => (s(0).toString, s(1).toString,s(2).toString,s(3).toString,s(4).toString, s(5).toString,s(6).toString,s(7).toString))
rdd1.foreachRDD((rdd, time) => {
val sqlContext = SQLContextSingleton.getInstance(rdd.sparkContext)
import sqlContext.implicits._
val requestsDataFrame = rdd.map(w => Record(w._1, w._2, w._3,w._4, w._5, w._6,w._7, w._8)).toDF()
requestsDataFrame.createOrReplaceTempView("requests")
val word_df =sqlContext.sql("select * from requests ")
println(s"========= $time =========")
word_df.show()
})
但是在数据框中,我也想包括来自kafka的时间戳。有人可以帮忙吗?
答案 0 :(得分:0)
Kafka记录具有各种属性。
请参见https://spark.apache.org/docs/2.2.0/structured-streaming-kafka-integration.html
请注意,Kafka有流式和批处理方法。
一个例子:
import java.sql.Timestamp
import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions._
import org.apache.spark.sql.streaming.OutputMode
val sparkSession = SparkSession.builder
.master("local")
.appName("example")
.getOrCreate()
import sparkSession.implicits._
sparkSession.sparkContext.setLogLevel("ERROR")
val socketStreamDs = sparkSession.readStream
.format("kafka")
.option("kafka.bootstrap.servers", "localhost:9092")
.option("subscribe", "AAA")
.option("startingOffsets", "earliest")
.load()
//.as[String]
//
//.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)", "CAST(timestamp AS STRING)")
.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)", "timestamp")
.writeStream
.format("console")
.option("truncate", "false")
.outputMode(OutputMode.Append())
.start().awaitTermination()
我的示例输出如下:
-------------------------------------------
Batch: 0
-------------------------------------------
+----+-----+-----------------------+
|key |value|timestamp |
+----+-----+-----------------------+
|null|RRR |2019-02-07 04:37:34.983|
|null|HHH |2019-02-07 04:37:36.802|
|null|JJJ |2019-02-07 04:37:39.1 |
+----+-----+-----------------------+
对于非结构化流,
您只需要在上面展开声明即可
stream.map { record => (record.timestamp(), record.key(), record.value()) }