如何防止在运行某些功能时在线程之间切换。蟒蛇

时间:2019-02-06 10:49:07

标签: python python-3.x multithreading python-asyncio

环境:
Ubuntu 18.04
Python 3.6.6

以下是代码示例:

import threading
import asyncio
from concurrent.futures import ThreadPoolExecutor

executor = ThreadPoolExecutor(3)


def thread_run():
    i = 0
    for x in range(10):
        i += 1
        print(x, threading.get_ident())


if __name__ == '__main__':
    loop = asyncio.get_event_loop()
    for x in range(2):
        loop.run_in_executor(executor, thread_run)
    loop.run_forever()

输出:

0 140522512643840
1 140522512643840
2 140522512643840
3 140522512643840
4 140522512643840
5 140522512643840
6 140522512643840
7 140522512643840
0 140522504251136
1 140522504251136
2 140522504251136
3 140522504251136
4 140522504251136
5 140522504251136
6 140522504251136
7 140522504251136
8 140522504251136
9 140522504251136
8 140522512643840
9 140522512643840

问题:
如何防止为thread_run函数切换“上下文”?
如何使某些功能“原子化”?
预期结果(保留多个线程):

0 140522512643840
...
9 140522512643840
0 140522504251136
...
9 140522504251136

PS:是保持调用thread_run的方法(loop.run_in_executor)所必需的。这只是简化的示例。我只询问案例,在示例中进行了描述。我知道,有很多方法可以重构代码并摆脱loop.run_in_executor,但是我尝试在这种特殊情况下找到解决方案。

PSS::在Windows 10中具有相同的行为(循环最多增加了100个)

67 8704
16 14712
68 8704
69 8704
70 8704
17 14712
71 8704

更新:#1 我正在尝试使用Decocator :(来自this answer

def synchronized(wrapped):
    lock = threading.Lock()
    @functools.wraps(wrapped)
    def _wrap(*args, **kwargs):
        with lock:
            result = wrapped(*args, **kwargs)
            return result

但是它对某些功能无效:

import threading
import asyncio
import functools
from concurrent.futures import ThreadPoolExecutor

executor = ThreadPoolExecutor(3)


def synchronized(wrapped):
    lock = threading.Lock()
    @functools.wraps(wrapped)
    def _wrap(*args, **kwargs):
        with lock:
            result = wrapped(*args, **kwargs)
            return result

    return _wrap


@synchronized
def thread_run():
    i = 0
    for x in range(5):
        i += 1
        print(x, "thread_run", threading.get_ident())


@synchronized
def thread_run2():
    i = 0
    for x in range(5):
        i += 1
        print(x, "thread_run2", threading.get_ident())


def not_important():
    i = 0
    for x in range(5):
        i += 1
        print(x, "not_important", threading.get_ident())


if __name__ == '__main__':
    loop = asyncio.get_event_loop()
    loop.run_in_executor(executor, thread_run)
    loop.run_in_executor(executor, thread_run2)
    loop.run_in_executor(executor, not_important)
    loop.run_forever()

输出:

0 thread_run 140039310980864
0 thread_run2 140039302588160
0 not_important 140039220623104
1 not_important 140039220623104
2 not_important 140039220623104
1 thread_run2 140039302588160
2 thread_run2 140039302588160
3 thread_run2 140039302588160
4 thread_run2 140039302588160
3 not_important 140039220623104
4 not_important 140039220623104
1 thread_run 140039310980864
2 thread_run 140039310980864
3 thread_run 140039310980864
4 thread_run 140039310980864

预期: 每个功能(not_important除外)均按顺序运行。不是并行的。

更新#2: 我添加了“半”解决方案的答案。但是,当您要“拼写”一个不应与任何其他功能插值的功能时,并不能解决问题。

2 个答案:

答案 0 :(得分:1)

当前解决方案(尚未完全解决)基于评论@shmee

import threading
import asyncio
import functools
from concurrent.futures import ThreadPoolExecutor

executor = ThreadPoolExecutor(3)


def synchronized(wrapped):
    @functools.wraps(wrapped)
    def _wrap(*args, **kwargs):
        with lock:
            result = wrapped(*args, **kwargs)
            return result

    return _wrap


@synchronized
def thread_run():
    i = 0
    for x in range(10):
        i += 1
        print(x, "thread_run", threading.get_ident())


@synchronized
def thread_run2():
    i = 0
    for x in range(10):
        i += 1
        print(x, "thread_run2", threading.get_ident())


def not_important():
    i = 0
    for x in range(10):
        i += 1
        print(x, "not_important", threading.get_ident())


if __name__ == '__main__':
    lock = threading.Lock()  # global lock

    loop = asyncio.get_event_loop()
    for x in range(5):
        loop.run_in_executor(executor, thread_run)
        loop.run_in_executor(executor, thread_run2)
        loop.run_in_executor(executor, not_important)
    loop.run_forever()

输出

0 thread_run 140192637171456
1 thread_run 140192637171456
2 thread_run 140192637171456
3 thread_run 140192637171456
4 thread_run 140192637171456
5 thread_run 140192637171456
6 thread_run 140192637171456
7 thread_run 140192637171456
8 thread_run 140192637171456
9 thread_run 140192637171456
0 thread_run2 140192637171456
1 thread_run2 140192637171456
2 thread_run2 140192637171456
3 thread_run2 140192637171456
4 thread_run2 140192637171456
5 thread_run2 140192637171456
6 thread_run2 140192637171456
7 thread_run2 140192637171456
8 thread_run2 140192637171456
9 thread_run2 140192637171456
0 not_important 140192620386048
1 not_important 140192620386048
2 not_important 140192620386048
3 not_important 140192620386048
0 thread_run 140192637171456
1 thread_run 140192637171456
2 thread_run 140192637171456
3 thread_run 140192637171456
4 thread_run 140192637171456
5 thread_run 140192637171456
6 thread_run 140192637171456
7 thread_run 140192637171456
8 thread_run 140192637171456
9 thread_run 140192637171456
0 thread_run2 140192637171456
1 thread_run2 140192637171456
2 thread_run2 140192637171456
3 thread_run2 140192637171456
4 thread_run2 140192637171456
4 not_important 140192620386048
5 not_important 140192620386048
6 not_important 140192620386048
7 not_important 140192620386048
8 not_important 140192620386048
9 not_important 140192620386048
0 not_important 140192620386048
1 not_important 140192620386048
2 not_important 140192620386048
3 not_important 140192620386048
4 not_important 140192620386048
5 not_important 140192620386048
6 not_important 140192620386048
7 not_important 140192620386048
8 not_important 140192620386048
9 not_important 140192620386048
5 thread_run2 140192637171456
6 thread_run2 140192637171456
7 thread_run2 140192637171456
8 thread_run2 140192637171456
9 thread_run2 140192637171456
0 not_important 140192637171456
1 not_important 140192637171456
2 not_important 140192637171456
3 not_important 140192637171456
4 not_important 140192637171456
5 not_important 140192637171456
0 thread_run 140192620386048
1 thread_run 140192620386048
6 not_important 140192637171456
7 not_important 140192637171456
8 not_important 140192637171456
9 not_important 140192637171456
2 thread_run 140192620386048
3 thread_run 140192620386048
4 thread_run 140192620386048
5 thread_run 140192620386048
6 thread_run 140192620386048
7 thread_run 140192620386048
8 thread_run 140192620386048
9 thread_run 140192620386048
0 thread_run2 140192628778752
1 thread_run2 140192628778752
2 thread_run2 140192628778752
3 thread_run2 140192628778752
4 thread_run2 140192628778752
5 thread_run2 140192628778752
6 thread_run2 140192628778752
7 thread_run2 140192628778752
8 thread_run2 140192628778752
9 thread_run2 140192628778752
0 thread_run 140192637171456
1 thread_run 140192637171456
2 thread_run 140192637171456
3 thread_run 140192637171456
4 thread_run 140192637171456
5 thread_run 140192637171456
6 thread_run 140192637171456
7 thread_run 140192637171456
0 not_important 140192628778752
1 not_important 140192628778752
2 not_important 140192628778752
3 not_important 140192628778752
4 not_important 140192628778752
5 not_important 140192628778752
6 not_important 140192628778752
7 not_important 140192628778752
8 not_important 140192628778752
9 not_important 140192628778752
8 thread_run 140192637171456
9 thread_run 140192637171456
0 thread_run2 140192620386048
1 thread_run2 140192620386048
2 thread_run2 140192620386048
3 thread_run2 140192620386048
4 thread_run2 140192620386048
5 thread_run2 140192620386048
6 thread_run2 140192620386048
7 thread_run2 140192620386048
8 thread_run2 140192620386048
9 thread_run2 140192620386048
0 thread_run 140192628778752
1 thread_run 140192628778752
2 thread_run 140192628778752
3 thread_run 140192628778752
4 thread_run 140192628778752
5 thread_run 140192628778752
6 thread_run 140192628778752
7 thread_run 140192628778752
8 thread_run 140192628778752
9 thread_run 140192628778752
0 not_important 140192637171456
1 not_important 140192637171456
2 not_important 140192637171456
3 not_important 140192637171456
4 not_important 140192637171456
5 not_important 140192637171456
0 thread_run2 140192620386048
1 thread_run2 140192620386048
2 thread_run2 140192620386048
3 thread_run2 140192620386048
4 thread_run2 140192620386048
5 thread_run2 140192620386048
6 thread_run2 140192620386048
7 thread_run2 140192620386048
8 thread_run2 140192620386048
9 thread_run2 140192620386048
6 not_important 140192637171456
7 not_important 140192637171456
8 not_important 140192637171456
9 not_important 140192637171456

当前结果
函数thread_runthread_run2没有冲突。但是它们可能会被not_important函数打断。

因此,这部分解决了我的问题。我想找到一种方法来防止其他任何函数中断thread_runthread_run2函数。因为在实际的项目中,还有许多其他方法/功能,我无法为所有这些方法/功能添加synchronized

答案 1 :(得分:0)

run_in_executor返回一个将来,您可以等待存档顺序执行

import asyncio
import threading
from concurrent.futures import ThreadPoolExecutor

executor = ThreadPoolExecutor(3)

def thread_run():
    i = 0
    for x in range(10):
        i += 1
        print(x, threading.get_ident())

async def run(loop):
    for _ in range(2):
        await loop.run_in_executor(executor, thread_run)

if __name__ == '__main__':
    loop = asyncio.get_event_loop()
    asyncio.ensure_future(run(loop))
    loop.run_forever()