我正在使用.NET-Framework 4.6.1
将ML.NET升级到v0.10后,我无法运行我的代码。 我建立了管道,然后在执行Fit()-Method时遇到错误。
消息=“找不到方法:\“ System.Collections.Generic.IEnumerable 1<!!0> System.Linq.Enumerable.Append(System.Collections.Generic.IEnumerable
1,!! 0)\”。“
using System.Collections.Generic;在我的指令中。
我是否缺少某些东西?还是现在应该坚持使用v0.9?
谢谢
using System;
using System.IO;
using Microsoft.ML;
using Microsoft.ML.Core.Data;
using Microsoft.ML.Data;
using MulticlassClassification_Iris.DataStructures;
namespace MulticlassClassification_Iris
{
public static partial class Program
{
private static string AppPath => Path.GetDirectoryName(Environment.GetCommandLineArgs()[0]);
private static string TrainDataPath = @"..\machinelearning-samples\samples\csharp\getting-started\MulticlassClassification_Iris\IrisClassification\Data\iris-train.txt";
private static string TestDataPath = @"..\machinelearning-samples\samples\csharp\getting-started\MulticlassClassification_Iris\IrisClassification\Data\iris-test.txt";
private static string ModelPath = @"C:\Users\waldemar\Documents\model.txt";
private static void Main(string[] args)
{
// Create MLContext to be shared across the model creation workflow objects
// Set a random seed for repeatable/deterministic results across multiple trainings.
var mlContext = new MLContext(seed: 0);
//1.
BuildTrainEvaluateAndSaveModel(mlContext);
//2.
TestSomePredictions(mlContext);
Console.WriteLine("=============== End of process, hit any key to finish ===============");
Console.ReadKey();
}
private static void BuildTrainEvaluateAndSaveModel(MLContext mlContext)
{
// STEP 1: Common data loading configuration
var trainingDataView = mlContext.Data.ReadFromTextFile<IrisData>(TrainDataPath, hasHeader: true);
var testDataView = mlContext.Data.ReadFromTextFile<IrisData>(TestDataPath, hasHeader: true);
// STEP 2: Common data process configuration with pipeline data transformations
var dataProcessPipeline = mlContext.Transforms.Concatenate("Features", "SepalLength",
"SepalWidth",
"PetalLength",
"PetalWidth").AppendCacheCheckpoint(mlContext);
// STEP 3: Set the training algorithm, then append the trainer to the pipeline
var trainer = mlContext.MulticlassClassification.Trainers.StochasticDualCoordinateAscent(labelColumn: "Label", featureColumn: "Features");
var trainingPipeline = dataProcessPipeline.Append(trainer);
// STEP 4: Train the model fitting to the DataSet
//Measure training time
var watch = System.Diagnostics.Stopwatch.StartNew();
Console.WriteLine("=============== Training the model ===============");
ITransformer trainedModel = trainingPipeline.Fit(trainingDataView);
//Stop measuring time
watch.Stop();
long elapsedMs = watch.ElapsedMilliseconds;
Console.WriteLine($"***** Training time: {elapsedMs/1000} seconds *****");
// STEP 5: Evaluate the model and show accuracy stats
Console.WriteLine("===== Evaluating Model's accuracy with Test data =====");
var predictions = trainedModel.Transform(testDataView);
var metrics = mlContext.MulticlassClassification.Evaluate(predictions, "Label", "Score");
Common.ConsoleHelper.PrintMultiClassClassificationMetrics(trainer.ToString(), metrics);
// STEP 6: Save/persist the trained model to a .ZIP file
using (var fs = new FileStream(ModelPath, FileMode.Create, FileAccess.Write, FileShare.Write))
mlContext.Model.Save(trainedModel, fs);
Console.WriteLine("The model is saved to {0}", ModelPath);
}
private static void TestSomePredictions(MLContext mlContext)
{
//Test Classification Predictions with some hard-coded samples
ITransformer trainedModel;
using (var stream = new FileStream(ModelPath, FileMode.Open, FileAccess.Read, FileShare.Read))
{
trainedModel = mlContext.Model.Load(stream);
}
// Create prediction engine related to the loaded trained model
var predEngine = trainedModel.CreatePredictionEngine<IrisData, IrisPrediction>(mlContext);
//Score sample 1
var resultprediction1 = predEngine.Predict(SampleIrisData.Iris1);
Console.WriteLine($"Actual: setosa. Predicted probability: setosa: {resultprediction1.Score[0]:0.####}");
Console.WriteLine($" versicolor: {resultprediction1.Score[1]:0.####}");
Console.WriteLine($" virginica: {resultprediction1.Score[2]:0.####}");
Console.WriteLine();
//Score sample 2
var resultprediction2 = predEngine.Predict(SampleIrisData.Iris2);
Console.WriteLine($"Actual: setosa. Predicted probability: setosa: {resultprediction2.Score[0]:0.####}");
Console.WriteLine($" versicolor: {resultprediction2.Score[1]:0.####}");
Console.WriteLine($" virginica: {resultprediction2.Score[2]:0.####}");
Console.WriteLine();
//Score sample 3
var resultprediction3 = predEngine.Predict(SampleIrisData.Iris3);
Console.WriteLine($"Actual: setosa. Predicted probability: setosa: {resultprediction3.Score[0]:0.####}");
Console.WriteLine($" versicolor: {resultprediction3.Score[1]:0.####}");
Console.WriteLine($" virginica: {resultprediction3.Score[2]:0.####}");
Console.WriteLine();
}
}
}
答案 0 :(得分:0)
- 正在更改ML.NET v0.10中的API,并将其移至0.11,以便在该API中的许多不同类之间保持一致。
您可能遇到的问题可能是由于许多API方法我们更改了参数的顺序引起的。因此,如果这些参数具有相同的类型,则可以编译但不能正常工作。
检查ML.NET API中正在使用的所有参数,以确保它们正确。 可能有帮助的是提供参数的名称,例如:
.method(param1:value1, param2:value2)
如果您正在从样本中寻求其他帮助,请检查此分支,我们将样本迁移到v0.10,好吗?
希望有帮助。 :)
C撒
答案 1 :(得分:0)
它正在运行ML.NET v0.10。我必须将.NET-Framework更新到4.7.1。