这是我到目前为止创建的(Pandas DataFrame): 代码:
table = pd.pivot_table(df1, index=['Assignee', 'IssueType'], columns=['Status'], values='Key', aggfunc={'Key': np.count_nonzero}, dropna=True)
table['Total'] = table.sum(axis=1)
table = table.fillna(0)
table = table.apply(pd.to_numeric, errors='ignore')
table = table.astype(int)
table.to_csv(output_file_path, sep=delimiter)
输出:
Assignee~IssueType~Analysis~Blocked~Closed~Done~In Progress~Open~Ready For QA Testing~Total
Smith, John~Story~0~0~0~0~0~1~0~1
Smith, John~Sub-task~0~0~0~0~0~1~0~1
Smith, John~Task~0~0~0~0~2~5~0~7
Doe, Jane~Bug~0~0~0~0~1~0~0~1
Polo, Marco~Bug~0~0~0~0~0~2~0~2
Polo, Marco~Story~0~0~1~0~0~0~0~1
Polo, Marco~Task~1~0~0~0~4~2~0~7
这就是我想要的(考虑到我可以有数字/非数字列:
Assignee~IssueType~Analysis~Blocked~Closed~Done~In Progress~Open~Ready For QA Testing~Total
Smith, John~Story~0~0~0~0~0~1~0~1
Smith, John~Sub-task~0~0~0~0~0~1~0~1
Smith, John~Task~0~0~0~0~2~5~0~7
Doe, Jane~Bug~0~0~0~0~1~0~0~1
Polo, Marco~Bug~0~0~0~0~0~2~0~2
Polo, Marco~Story~0~0~1~0~0~0~0~1
Polo, Marco~Task~1~0~0~0~4~2~0~7
**GrandTotal~GrandTotal~1~0~1~0~7~11~0~20**
使用Pandas DataFrames实现此目的的最佳/最佳方式是什么? 提前感谢您的帮助。
答案 0 :(得分:0)
这是我对这个问题的回答。也许还有改进的余地(但至少我满意)。
def append_summary_total(df_index, file_path, delimiter):
file_path = os.path.abspath(file_path)
delimiter = str(delimiter)
df = pd.read_csv(file_path, sep=delimiter)
sums = df.select_dtypes(pd.np.number).sum().rename('Grand Total')
df.loc['Grand Total'] = df.select_dtypes(pd.np.number).sum()
df = df.fillna("GrandTotal")
df = df.set_index(df_index)
df = df.apply(pd.to_numeric, errors='ignore')
df = df.astype(int)
df.to_csv(file_path, sep=delimiter)
这是输出: Sample Output