我正在使用Jupyter Notebook在FloydHub上训练以下模型。但是,每当我训练模型时,它都会花费很多时间(1分钟)。笔记本下方的统计信息显示只有2%的GPU被利用。
我尝试运行命令torch.cuda.is_available()
,它返回True
。
import torch
from torch import nn,optim
import torch.nn.functional as F
from torchvision import datasets,transforms
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5)),
])
trainset = datasets.MNIST('~/.pytorch/MNIST_data/',download=True,train=True,transform=transform)
trainloader = torch.utils.data.DataLoader(trainset,batch_size=64,shuffle=True)
testset = datasets.MNIST('~/.pytorch/MNIST_data/',download=True,train=False,transform=transform)
testloader = torch.utils.data.DataLoader(testset,batch_size=64,shuffle=True)
class Classifier(nn.Module):
def __init__(self):
super().__init__()
self.hidden = nn.Linear(784,256).cuda()
self.output = nn.Linear(256,10).cuda()
self.dropout = nn.Dropout(p=0.2).cuda()
def forward(self,x):
x = x.view(x.shape[0],-1).cuda()
x = self.hidden(x).cuda()
x = torch.sigmoid(x).cuda()
x = self.dropout(x).cuda()
x = self.output(x).cuda()
x = F.log_softmax(x,dim=1).cuda()
return x.cuda()
model = Classifier()
model.cuda()
criterion = nn.NLLLoss().cuda()
optimizer = optim.SGD(model.parameters(),lr=0.5)
epochs = 30
training_losses = []
test_losses = []
for e in range(epochs):
train_loss = 0
test_loss = 0
accuracy = 0
for images,labels in trainloader:
optimizer.zero_grad()
output = model(images)
labels = labels.cuda()
loss = criterion(output,labels)
loss.backward()
optimizer.step()
train_loss+=loss.item()
with torch.no_grad():
# set the model to testing mode
model.eval()
for images,labels in testloader:
output = model(images)
labels = labels.cuda()
test_loss+=criterion(output,labels)
ps = torch.exp(output)
# get the class with the highest probability
_,top_class = ps.topk(1,dim=1)
equals = top_class == labels.view(*top_class.shape)
accuracy+=torch.mean(equals.type(torch.FloatTensor))
model.train()
training_losses.append(train_loss/len(trainloader))
test_losses.append(test_loss/len(testloader))
if((e+1)%5 == 0):
print(f"Epoch:{e+1}\n",
f"Training Loss:{train_loss/len(trainloader)}\n",
f"Test Loss:{test_loss/len(testloader)}\n",
f"Test Accuracy:{(accuracy/len(testloader)*100)}\n\n")
答案 0 :(得分:0)
基于MNIST(小型数据集)的使用的三个建议:
-预加载数据:即,不使用标准的dataloader
,而是预加载到.to(cuda)
,然后对此进行迭代。
-增加批次大小。
-不要使用MLP(线性层),而应使用CNN。