我正在使用python和OpenCV从rtsp流中获取视频。我从流中获取单个帧并将其保存到文件系统。
我写了一个StreamingWorker
来处理帧的获取和保存。另外,还有一个StreamPool
,其中包含所有流对象。我认为StreamingWorker
始终会运行,因此每个内核应该只有一个,以便占用更多资源。然后StreamPool
将VideoCapture
对象提供给可用的StreamingWorker
。
问题在于该脚本在大多数情况下正在阻塞:
import os
import time
import threading
import cv2 as cv
class StreamingWorker(object):
def __init__(self, stream_pool):
self.stream_pool = stream_pool
self.start_loop()
def start_loop(self):
while True:
try:
# getting a stream from the read_strategy
stream_object = self.stream_pool.next()
# getting an image from the stream
_, frame = stream_object['stream'].read()
# saving image to file system
cv.imwrite(os.path.join('result', stream_object['feed'], '{}.jpg'.format(time.time())))
except ValueError as e:
print('[error] {}'.format(e))
class StreamPool(object):
def __init__(self, streams):
self.streams = [{'feed': stream, 'stream': cv.VideoCapture(stream)} for stream in streams]
self.current_stream = 0
self.lock = threading.RLock()
def next(self):
self.lock.acquire()
if(self.current_stream + 1 >= len(self.streams)):
self.current_stream = 0
else:
self.current_stream += 1
result = self.streams[self.current_stream]
self.lock.release()
return result
def get_cores():
# This function returns the number of available cores
import multiprocessing
return multiprocessing.cpu_count()
def start(stream_pool):
StreamingWorker(stream_pool)
def divide_list(input_list, amount):
# This function divides the whole list into list of lists
result = [[] for _ in range(amount)]
for i in range(len(input_list)):
result[i % len(result)].append(input_list[i])
return result
if __name__ == '__main__':
stream_list = ['rtsp://some/stream1', 'rtsp://some/stream2', 'rtsp://some/stream3']
num_cores = get_cores()
divided_streams = divide_list(stream_list, num_cores)
for streams in divided_streams:
stream_pool = StreamPool(streams)
thread = threading.Thread(target=start, args=(stream_pool))
thread.start()
当我想到这一点时,我没有考虑到大多数操作都会阻塞以下操作:
# Getting a frame blocks
_, frame = stream_object['stream'].read()
# Writing to the file system blocks
cv.imwrite(os.path.join('result', stream_object['feed'], '{}.jpg'.format(time.time())))
花费太多时间进行阻塞的问题是大多数处理能力被浪费了。我曾考虑过将期货与ThreadPoolExecutor
一起使用,但似乎无法达到使用最大数量的处理核心的目标。也许我没有设置enaugh线程。
是否存在一种标准的处理阻塞操作的方法,以充分利用内核的处理能力?我可以接受与语言无关的答案。
答案 0 :(得分:0)
我最终通过ThreadPoolExecutor
函数使用了add_done_callback(fn)
。
class StreamingWorker(object):
def __init__(self, stream_pool):
self.stream_pool = stream_pool
self.thread_pool = ThreadPoolExecutor(10)
self.start_loop()
def start_loop(self):
def done(fn):
print('[info] future done')
def save_image(stream):
# getting an image from the stream
_, frame = stream['stream'].read()
# saving image to file system
cv.imwrite(os.path.join('result', stream['feed'], '{}.jpg'.format(time.time())))
while True:
try:
# getting a stream from the read_strategy
stream_object = self.stream_pool.next()
# Scheduling the process to the thread pool
self.thread_pool.submit(save_image, (stream_object)).add_done_callback(done)
except ValueError as e:
print('[error] {}'.format(e))
在将来完成之后,我实际上并不想做任何事情,但是如果我使用result()
,那么while True
将会停止,这也将使使用线程池的所有目的失效。 / p>
旁注::在调用threading.Rlock()
时,我不得不添加self.stream_pool.next()
,因为显然opencv无法处理来自多个线程的调用。