我正在使用svm在opencv python中创建对象分类器。训练数据集包含200个正像和200个负像。对于正图像,首先拍摄200张图像,然后从图像中裁剪目标对象,然后将其调整为(64,128)大小以进行HOG计算。然后对于负图像,首先创建图像金字塔,然后应用64X128的滑动窗口,然后为正图像以及带有标签1和0的负图像的所有窗口计算HOG。在生猪特征上训练了svm模型。 我收到错误信息“ cv2.error:OpenCV(3.4.2)C:\ projects \ opencv-python \ opencv \ modules \ ml \ src \ svm.cpp:2010:错误:(-215:断言失败)当我使用res = svm调用预测函数时,函数'cv :: ml :: SVMImpl :: predict '“中的samples.cols == var_count && samples.type()== 5在函数'cv :: ml :: SVMImpl :: predict '” .predict(samples [0])。ravel()方法。
import cv2
import os
import time
import numpy as np
import imutils
positive_path='C:\\Users\\Admin\\3D Objects\\datqaet with hog and svm\\ROI images'
negative_path='C:\\Users\\Admin\\3D Objects\\datqaet with hog and svm\\Negative images'
def pyramid(img): #Create image Pyramid
minSize=(30, 30)
imgarr = []
while True:
scale = 2
imgarr.append(img)
w = int(img.shape[1] / scale)
img = imutils.resize(img, width=w)
if img.shape[0] < minSize[1] or img.shape[1] < minSize[0]:
break
return imgarr
def sliding_window(image, stepSize, windowSize): #Sliding window for negative images
sliding = []
for y in range(0, image.shape[0], stepSize):
for x in range(0, image.shape[1], stepSize):
sliding.append((x, y, image[y:y + windowSize[1], x:x + windowSize[0]]))
return sliding
def get_hog() :
winSize = (64,128)
blockSize = (16,16)
blockStride = (16,16)
cellSize = (8,8)
nbins = 9
derivAperture = 1
winSigma = 4.
histogramNormType = 0
L2HysThreshold = 0.2
gammaCorrection = 0
nlevels = 64
signedGradient = True
hog = cv2.HOGDescriptor(winSize,blockSize,blockStride,cellSize,nbins,derivAperture,winSigma,histogramNormType,L2HysThreshold,gammaCorrection,nlevels, signedGradient)
return hog
samples = []
labels = []
sam = []
hog = get_hog()
for filename in os.listdir(positive_path):
img = cv2.imread(os.path.join(positive_path,filename),0) #RGB image
img = cv2.resize(img,(64,128))
img = np.array(img)
hist = hog.compute(img)
hist = cv2.normalize(hist,None)
sam.append(img)
samples.append(hist)
labels.append(1)
i=0
for filename in os.listdir(negative_path):
img = cv2.imread(os.path.join(negative_path,filename),0)
(winW, winH) = (64,128)
pyr = pyramid(img)
for resized in pyr:
sliding = sliding_window(resized, stepSize=32, windowSize=(winW, winH))
for (x, y, window) in sliding:
if window.shape[0] != winH or window.shape[1] != winW:
continue
hist = hog.compute(window)
hist = cv2.normalize(hist,None)
sam.append(window)
samples.append(hist)
labels.append(0)
print(i)
i=i+1
samples = np.array(samples,dtype=np.float32)
labels = np.array(labels,dtype=int)
samples = np.squeeze(samples)
print(len(samples))
print(samples.shape)
rand = np.random.RandomState(10)
shuffle = rand.permutation(len(samples))
sam = samples[shuffle]
samples = sam[shuffle]
labels = labels[shuffle]
svm = cv2.ml.SVM_create()
svm.setKernel(cv2.ml.SVM_LINEAR)
svm.setType(cv2.ml.SVM_C_SVC)
svm.setC(2.67)
svm.setGamma(5.383)
svm_params = dict( kernel_type = cv2.ml.SVM_LINEAR,
svm_type = cv2.ml.SVM_C_SVC,
C=2.67, gamma=5.383 )
svm.train(samples,cv2.ml.ROW_SAMPLE,labels)
print("trained")
res = svm.predict(samples[0]).ravel()
print(res)
cap = cv2.VideoCapture(0)
while True:
ret, img = cap.read()
img=cv2.resize(img,(400,400))
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
(winW, winH) = (64,128)
pyr = pyramid(img)
for resized in pyr:
sliding = sliding_window(resized, stepSize=32, windowSize=(winW, winH))
for (x, y, window) in sliding:
if window.shape[0] != winH or window.shape[1] != winW:
continue
hist = hog.compute(window)
hist = cv2.normalize(hist,None)
hist = np.reshape(hist,(1,hist.shape[0]))
res = svm.predict(hist)[1].ravel()
if res == 1:
print("found")
cv2.imshow('img',img)
cv2.waitKey(10)