我对机器学习非常陌生,在过去的两天里,我一直在努力摆脱Unknown label type: 'continuous'
错误。
我的代码:将numpy导入为np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
dataset = pd.read_csv(r'allData.csv', sep=',')
X = dataset.iloc[:, 1:3].values
y = dataset.iloc[:, 4].values
train_features, test_features, train_lables, test_lables = train_test_split(X, y, test_size=10, random_state=10)
feature_scaler = StandardScaler()
train_features = feature_scaler.fit_transform(train_features)
test_features = feature_scaler.transform(test_features)
classifier = RandomForestClassifier(n_estimators=300, random_state=10)
all_accuracies = cross_val_score(estimator=classifier, X=train_features, y=train_lables, cv="warn")
#all_accuracies = cross_val_score(estimator=classifier, X=train_features, y=train_lables, cv=3)
#print(all_accuracies)
该错误出现在cross_val_score
部分,我不明白为什么会收到Unknown label type: 'continuous'
错误。
任何帮助将不胜感激。
如果有帮助,我拥有的所有数据都是4列300行。
答案 0 :(得分:0)
您在使用>>> datetime( 2018, 6, 1, 0, 0, 0, 0, tzlocal() ).astimezone( utc )
datetime.datetime(2018, 5, 31, 22, 0, tzinfo=<UTC>)
的同时具有连续输出。如果您要解决的问题是回归,则应使用RandomForestClassifier
。