我正在熊猫df'sp500news3'上运行以下命令,它返回None值
def extract_ticker(title):
for word in title:
if word in constituents['Symbol']:
return word
sp500news3['tickers'] = sp500news3['title'].apply(extract_ticker)
#sp500news3 sample:
index date_publish title tickers
0 79944 2007-01-29 19:08:35 (MSFT, Vista, corporate, sales, go, very, well) None
1 181781 2007-12-14 19:39:06 (WMB, No, Anglican, consensus, on, Episcopal, Church) None
2 213175 2008-01-22 11:17:19 (CSX, quarterly, profit, rises) None
3 93554 2008-01-22 18:52:56 (C, says, 30, bln, capital, helps, exceed, target) None
成分['符号']:样本
0 TWX
1 C
2 MSFT
3 WMB ...
从以下位置复制spacy文档:
constituents = pd.DataFrame({"Symbol":["TWX","C","MSFT","WMB"]})
sp500news3 = pd.DataFrame({"title":["MSFT Vista corporate sales go very well","WMB No Anglican consensus on Episcopal Church","CSX quarterly profit rises",'C says 30 bln capital helps exceed target','TWX plans cable spinoff']})
import spacy
nlp = spacy.load('en_core_web_sm')
sp500news3['title'] = sp500news3['title'].apply(nlp)
答案 0 :(得分:1)
您必须使用word.text
,因为当iterating over a spacy.tokens.doc.Doc
遍历Token
which doesn't implement __eq__
for strings时:
for word in title:
if word.text in constituents['Symbol'].values:
return word
以您的示例为例:
In [11]: sp500news3['title'].apply(extract_ticker)
Out[11]:
0 MSFT
1 WMB
2 None
3 C
4 TWX
Name: title, dtype: object