我想对我的24x20矩阵'A'
,'B'
,'C'
进行重塑,这些矩阵是从文本文件中提取的,并在通过{{ 1}}在for循环遍历循环中,每个循环将是一行,并排排列3个矩阵的所有元素,如下所示:
def normalize()
到目前为止,根据@odyse的建议,我在for循环末尾使用了以下代码段:
[[A(1,1),B(1,1),C(1,1),A(1,2),B(1,2),C(1,2),...,A(24,20),B(24,20),C(24,20)] #cycle1
[A(1,1),B(1,1),C(1,1),A(1,2),B(1,2),C(1,2),...,A(24,20),B(24,20),C(24,20)] #cycle2
[A(1,1),B(1,1),C(1,1),A(1,2),B(1,2),C(1,2),...,A(24,20),B(24,20),C(24,20)]] #cycle3
但是当我在for循环中的for cycle in range(cycles):
dff = pd.DataFrame({'A_norm':A_norm[cycle] , 'B_norm': B_norm[cycle] , 'C_norm': C_norm[cycle] } , index=[0])
D = dff.as_matrix().ravel()
if cycle == 0:
Results = np.array(D)
else:
Results = np.vstack((Results, D2))
np.savetxt("Results.csv", Results, delimiter=",")
之后使用它时,尽管存在错误(ValueError),但对于def normalize()
也有warning FutureWarning: Method .as_matrix will be removed in a future version. Use .values instead
的问题,这并不重要,但是现在由于仍然是FutureWarning,因此我使用D = dff.as_matrix().ravel()
检查了输出的形状是否正确3个周期,并且它是(3,1440),这是3行,即3个周期,列数应该是480 = 1440的3倍,但总的来说不是稳定解决方案。
完整的脚本如下:
print(data1.shape)
注意1:我的数据是txt文件,如下:
import numpy as np
import pandas as pd
import os
def normalize(value, min_value, max_value, min_norm, max_norm):
new_value = ((max_norm - min_norm)*((value - min_value)/(max_value - min_value))) + min_norm
return new_value
#the size of matrices are (24,20)
df1 = np.zeros((24,20))
df2 = np.zeros((24,20))
df3 = np.zeros((24,20))
#next iteration create all plots, change the number of cycles
cycles = int(len(df)/480)
print(cycles)
for cycle in range(3):
count = '{:04}'.format(cycle)
j = cycle * 480
new_value1 = df['A'].iloc[j:j+480]
new_value2 = df['B'].iloc[j:j+480]
new_value3 = df['C'].iloc[j:j+480]
df1 = print_df(mkdf(new_value1))
df2 = print_df(mkdf(new_value2))
df3 = print_df(mkdf(new_value3))
for i in df:
try:
os.mkdir(i)
except:
pass
min_val = df[i].min()
min_nor = -1
max_val = df[i].max()
max_nor = 1
ordered_data = mkdf(df.iloc[j:j+480][i])
csv = print_df(ordered_data)
#Print .csv files contains matrix of each parameters by name of cycles respectively
csv.to_csv(f'{i}/{i}{count}.csv', header=None, index=None)
if 'C' in i:
min_nor = -40
max_nor = 150
#Applying normalization for C between [-40,+150]
new_value3 = normalize(df['C'].iloc[j:j+480], min_val, max_val, -40, 150)
C_norm = print_df(mkdf(new_value3))
C_norm.to_csv(f'{i}/norm{i}{count}.csv', header=None, index=None)
else:
#Applying normalization for A,B between [-1,+1]
new_value1 = normalize(df['A'].iloc[j:j+480], min_val, max_val, -1, 1)
new_value2 = normalize(df['B'].iloc[j:j+480], min_val, max_val, -1, 1)
A_norm = print_df(mkdf(new_value1))
B_norm = print_df(mkdf(new_value2))
A_norm.to_csv(f'{i}/norm{i}{count}.csv', header=None, index=None)
B_norm.to_csv(f'{i}/norm{i}{count}.csv', header=None, index=None)
dff = pd.DataFrame({'A_norm':A_norm[cycle] , 'B_norm': B_norm[cycle] , 'C_norm': C_norm[cycle] } , index=[0])
D = dff.as_matrix().ravel()
if cycle == 0:
Results = np.array(D)
else:
Results = np.vstack((Results, D))
np.savetxt("Results.csv", Results , delimiter=',', encoding='utf-8')
#Check output shape whether is (3, 1440) or not
data1 = np.loadtxt('Results.csv', delimiter=',')
print(data1.shape)
注意2::我在文本文件中提供了3个周期的数据集: Text dataset
注3::为了以正确的顺序将A,B,C参数映射到矩阵中,我使用了id_set: 000
A: -2.46882615679
B: -2.26408246559
C: -325.004619528
print_df()
函数,但由于将其简化为核心问题,并在本文开头保留一个最小的示例。让我知道您是否需要。
预期结果应通过在代表标准化版本的mkdf()
,'A_norm'
,'B_norm'
上完成 for循环来完成分别为'C_norm'
,'A'
,'B'
的输出,我们将其称为“ Results.csv”应该是可逆的以重新生成'C'
,{{1 }},'A'
遍历循环的矩阵再次将其保存在csv中。用于控制的文件,因此,如果您对反面有任何想法,请单独提及,否则只需使用'B'
进行控制即可,它应为(3,1440)。
祝你有美好的一天,并提前致谢!