TensorFlow:从一个文件夹中分类多个图像

时间:2019-02-05 12:47:31

标签: python tensorflow

我先前编写的代码在单个图像上运行良好。但是现在我希望程序运行多个图像。我只需要提供文件夹名称作为参数即可。

我以这样的方式修改了代码:打开目录并保存图像,但出现错误

  

ValueError:无法将大小为98304的数组重塑为形状   (1,128,128,3)

x_batch=images.reshape(1,128,128,3)上:

images = []

for filename in os.listdir(folder):
    image = cv2.imread(os.path.join(folder,filename))
    image = cv2.resize(image, (128, 128))
    images = np.append(images, image)
    images = np.array(images, dtype=np.uint8)
    images = images.astype('float32')
    images = np.multiply(images, 1.0/255.0)
    x_batch=images.reshape(1,128,128,3)        <------ ERROR HERE

    sess = tf.Session()
    saver = tf.train.import_meta_graph('/home/kubuntu/SimpleCode/.meta')
    saver.restore(sess, tf.train.latest_checkpoint('./'))
    graph = tf.get_default_graph()
    y_pred = graph.get_tensor_by_name("y_pred:0")    
    x= graph.get_tensor_by_name("x:0")
    y_true = graph.get_tensor_by_name("y_true:0")
    y_test_images = np.zeros((1, 6))
    feed_dict_testing= {x:x_batch, y_true:y_test_images}
    result=sess.run(y_pred, feed_dict=feed_dict_testing)
    print("Up  :"+str(result[0][0]))
    print("Down :"+str(result[0][1]))
    print("Left  :"+str(result[0][2]))
    print("Right  :"+str(result[0][3]))
    print("Forward  :"+str(result[0][4]))
    print("Backward  :"+str(result[0][5]))

这是从文件夹读取图像的正确方法吗?如何对给定文件夹中的所有图像进行分类并给出每个图像的预测?

1 个答案:

答案 0 :(得分:1)

根据您的答案,您应该执行以下操作:

for filename in os.listdir(folder):
    image = cv2.imread(os.path.join(folder,filename))
    image = cv2.resize(image, (128, 128))
    image = np.array(image, dtype=np.uint8)
    image = image.astype('float32')
    image = np.multiply(image, 1.0/255.0)
    x_batch=image.reshape(1,128,128,3)

当您读取第二个图像时,代码失败,因为images数组附加了两个图像,并且您试图像只有一个图像那样对其进行整形。

此外,在for循环中迭代创建tf.Session并始终加载图形是一种极其糟糕的做法。我将通过以下方式更改整个代码:

with tf.Session() as sess:
    saver = tf.train.import_meta_graph('/home/kubuntu/SimpleCode/.meta')
    saver.restore(sess, tf.train.latest_checkpoint('./'))
    graph = tf.get_default_graph()
    y_pred = graph.get_tensor_by_name("y_pred:0")    
    x = graph.get_tensor_by_name("x:0")
    y_true = graph.get_tensor_by_name("y_true:0")
    y_test_images = np.zeros((1, 6))

    for filename in os.listdir(folder):
        image = cv2.imread(os.path.join(folder,filename))
        image = cv2.resize(image, (128, 128))
        image = np.array(image, dtype=np.uint8)
        image = image.astype('float32')
        image = np.multiply(image, 1.0/255.0)
        x_batch=image.reshape(1,128,128,3)
        feed_dict_testing= {x:x_batch, y_true:y_test_images}
        result = sess.run(y_pred, feed_dict=feed_dict_testing)
        print("Up  :"+str(result[0][0]))
        print("Down :"+str(result[0][1]))
        print("Left  :"+str(result[0][2]))
        print("Right  :"+str(result[0][3]))
        print("Forward  :"+str(result[0][4]))
        print("Backward  :"+str(result[0][5]))