我有一个数据框,例如:
Cluster sequence_name
1 species1
1 species1
1 species2
1 species3
1 species3
1 gene1
1 gene2
2 species4
2 species5
2 spciess5
2 species3
2 gene3
2 gene4
,我想得到一个矩阵,例如:
gene1 gene2 gene3 gene4
species5 0 0 1 1
species4 0 0 1 1
species1 1 1 0 0
species2 1 1 0 0
species3 1 1 1 1
其中1
表示存在speciesX
的基因,而0
表示不存在的基因。
存在表示speciesX
中same cluster
比geneX
中存在。例如,gene1在cluster1
中以species1, 2 and 3
的形式出现。
相反,species5 and 4
中不存在cluster1
。
您也可以看到;有多个重复项(在同一簇中,一个物种可以代表多次)。 谢谢您的帮助。
真实数据如下:
cluster_names seq_names
1 AP_000401.1
1 NP_039001.1
1 Canis_lupus
1 Canis_familiaris
2 YP_0090909.1
2 Mustela_putorius
2 Mustela_furo
2 YP_0909200.1
....
...
AP和NP等XX个字母是基因 和属种
回应丹尼斯:
以下是真实数据的开头:
cluster_names seq_names
1 scf7180005155889:2745-3053(-):Drosophia_melanogaster
1 IDBA_scaffold_72878:85-225:292707-293006(+):Orussu_sp
1 scaffold_3615:40850-41320(-):Canis_lupus
1 scaffold_8697:754-1209(-):homo_sapiens
1 scf7180005155889:72-1908(-):homo_sapiens
1 YP_003969716.1
1 NP_003986717.1
2 scaffold_17536:2745-3053(-):Drosophia_melanogaster
2 scf7180005155889:2000-8900(-):Drosophia_melanogaster
2 scaffold_8697:754-1209(-):homo_sapiens
2 YP_003956764.1
2 YP_004894416.1
2 YP_008958968.1
我应该得到的输出是:
对丹尼斯的回应:
> df <- read.table(text = "Cluster sequence_name
+ 1 :Drosophia_melanogaster
+ 1 scf7180005155889:2745-3053(-):Drosophila_melanogaster
+ 1 scf7180005155889:2745-3053(-):Orussu_sp
+ 1 scf7180005155889:2745-3053(-):Canis_lupus
+ 1 scf7180005155889:72-1908(-):Homo_sapiens
+ 1 scf7180005155889:2745-3053(-):Homo_sapiens
+ 1 YP_003970075.1
+ 1 YP_005070075.1
+ 2 scf7180005155889:72-1908(-):Drosophila_melanogaster
+ 2 scf7180005155889:72-1908(-):Drosophila_melanogaster
+ 2 scf7180005155889:72-1908(-):Homo_sapiens
+ 2 YP_039970075.1
+ 2 NP_003900075.1",header = T)
> df <- setDT(df)
> species <- df[grep("[0-9]+\\([+-]\\):[A-z ]+",sequence_name)]
> species[,sequence_name := str_extract(sequence_name,"(?<=[0-9]\\([+-]\\):)[A-z ]+")]
> genes <- df[grep("[0-9]+\\.1",sequence_name)]
> genes[,sequence_name :=sequence_name]
> plouf <- merge(genes,species,by = "Cluster",allow.cartesian=TRUE)
> result <- dcast(plouf,sequence_name.y~sequence_name.x,fun.aggregate = length)
Using 'sequence_name.y' as value column. Use 'value.var' to override
> row.names(result)<-result$sequence_name.y
> result$sequence_name.y<- NULL
> result
NP_003900075.1 YP_003970075.1 YP_005070075.1 YP_039970075.1
1: 0 1 1 0
2: 2 1 1 2
3: 1 2 2 1
4: 0 1 1 0
答案 0 :(得分:3)
library(data.table)
library(stringr)
df <- setDT(df)
我将在此处使用data.table
。因此,我们的想法是创建两个数据框架,一个包含基因,一个包含物种
species <- df[grep("species",sequence_name)]
species[,sequence_name := str_extract(sequence_name,"(?<=:)[a-z0-9]+$")]
genes <- df[grep("gene",sequence_name)]
> species
Cluster sequence_name
1: 1 species1
2: 1 species2
3: 1 species3
4: 2 species4
5: 2 species5
6: 2 species3
> genes
Cluster sequence_name
1: 1 gene1
2: 1 gene2
3: 2 gene3
4: 2 gene4
您想使用allow.cartesian=TRUE
通过群集将它们合并在一起,因为合并向量不是没有任何数据的单个标识符。
plouf <- merge(genes,species,by = "Cluster",allow.cartesian=TRUE)
Cluster sequence_name.x sequence_name.y
1: 1 gene1 species1
2: 1 gene1 species2
3: 1 gene1 species3
4: 1 gene2 species1
5: 1 gene2 species2
6: 1 gene2 species3
7: 2 gene3 species4
8: 2 gene3 species5
9: 2 gene3 species3
10: 2 gene4 species4
11: 2 gene4 species5
12: 2 gene4 species3
然后,在计算发生次数的同时,获取结果只是采用宽格式,您可以在此处使用dcast
:
result <- dcast(plouf,sequence_name.y~sequence_name.x,fun.aggregate = length)
sequence_name.y gene1 gene2 gene3 gene4
1: species1 1 1 0 0
2: species2 1 1 0 0
3: species3 1 1 1 1
4: species4 0 0 1 1
5: species5 0 0 1 1
等等。我让dplyr
经验丰富的用户提出与dplyr
等效/改进的解决方案。
df <- read.table(text = "Cluster sequence_name
1 Scaffold_1:species1
1 Scaffold_2:species2
1 Scaffold_3:species3
1 gene1
1 gene2
2 Scaffold_4:species4
2 Scaffold_5:species5
2 Scaffold_6:species3
2 gene3
2 gene4",header = T)
您将显示真实数据:
df <- read.table(text ="cluster_names seq_names
1 scf7180005155889:2745-3053(-):Drosophia_melanogaster
1 scaffold_2484:292707-293006(+):Orussu_sp
1 scaffold_3615:40850-41320(-):Canis_lupus
1 scaffold_8697:754-1209(-):homo_sapiens
1 scf7180005155889:72-1908(-):homo_sapiens
1 YP_003969716.1
1 NP_003986717.1
2 scaffold_17536:2745-3053(-):Drosophia_melanogaster
2 scf7180005155889:2000-8900(-):Drosophia_melanogaster
2 scaffold_8697:754-1209(-):homo_sapiens
2 YP_003956764.1
2 YP_004894416.1
2 YP_008958968.1",header = T)
您应该通过以下方式更改创建两个数据表的步骤:
species <- df[grep("[0-9]+\\([+-]\\):[A-z ]+",seq_names)]
species[,sequence_name := str_extract(seq_names,"(?<=[0-9]\\([+-]\\):)[A-z ]+")]
genes <- df[grep("[0-9]+\\.1",seq_names)]
genes[,sequence_name :=seq_names]
这里"[0-9]+\\.1"
假定所有基因都以1结尾,并且物种描述中没有意义。为了提取物种信息,我想它总是在数字后包含(+):
或(-)+
。
但这是一个正则表达式问题,如果您有问题,则应该是另一个问题。您在这里的问题是找到整形数据以获得结果的方法。我的回答是为您提供了处理示例数据的步骤:使用正则表达式创建两个基因和物种数据框,将它们合并并重新成形。
其余的作品:
plouf <- merge(genes,species,by = "cluster_names",allow.cartesian=TRUE)
result <- dcast(plouf,sequence_name.y~sequence_name.x,fun.aggregate = length)
答案 1 :(得分:3)
使用 tidyverse :
# data
df1 <- read.table(text = "Cluster sequence_name
1 species1
1 species1
1 species2
1 species3
1 species3
1 gene1
1 gene2
2 species4
2 species5
2 species5
2 species3
2 gene3
2 gene4", header = TRUE, stringsAsFactors = FALSE)
# so that we know which row is species
species <- paste("species", 1:5, sep = "")
#[1] "species1" "species2" "species3" "species4" "species5"
library(tidyverse)
res <- reduce(split(df1, df1$sequence_name %in% species), left_join, by = "Cluster") %>%
unique() %>%
spread(key = "sequence_name.x", value = "Cluster") %>%
mutate_if(is.numeric, funs(as.numeric(!is.na(.))))
res
# sequence_name.y gene1 gene2 gene3 gene4
# 1 species1 1 1 0 0
# 2 species2 1 1 0 0
# 3 species3 1 1 1 1
# 4 species4 0 0 1 1
# 5 species5 0 0 1 1