如何使用networkx图基于节点之间的属性值找到2个节点之间的路径?

时间:2019-02-05 00:01:12

标签: python graph networkx

我可以通过一棵树搜索并使用简单的方法获得节点之间的最短路径:

nx.shortest_path(G, source=, target=)

但是如何选择经过具有特定属性值的节点的路径?

我有带有节点的简单图

G = nx.Graph()
for token in document:
    G.add_node(token.orth_, item = token.i, tag = token.tag_, dep = token.dep_)

和边缘:

for token in document:    
    for child in token.children:
        G.add_edge(token.orth_, child.orth_, pitem = token.i, citem = child.i,
                   ptag = token.tag_, pdep = token.dep_, ctag = child.tag_, cdep = child.dep_)

我能找到简单的解决方案,因为现在我正在努力构建复杂的功能。

编辑

想法是要有一个这样的功能:(粗略)

def getPathByNode(betw_word, betw_attr, src_word, src_attr, trg_word, trg_attr):
    nx.shortest_path(G, source=src, source_attr=src_attr, target=trg, target_attr=trg_attr, through=betw_word, through_attr=betw_attr)
    ....

但是当然并非必须传递所有参数。 作为输入,我将举个例子:

source_attr = {'dep_': 'ROOT'}
target_attr = {'tag_': 'NN'}

through = "of"through = "from"through_attr = {'tag_': 'IN'}

等等。我当前正在尝试从中间(through='from')开始构建递归,并搜索邻居,但相同的情况-缺少属性。

for i in G.neighbors("from"):
    print(i)

我只是一个字符串。

1 个答案:

答案 0 :(得分:1)

一个简单的解决方案是计算从源到目标的所有路径。然后,只过滤掉所有路径,而没有一个具有所需条件的节点,然后在这组路径中选择最短的路径。假设您有一个无向,无权的图,则应该可以执行以下操作:

import networkx as nx

# Generate a sample graph:
G = nx.barabasi_albert_graph(10, 3, seed=42)
print(G.edges())

def check_attribute(G, node):
    # Say the condition is node id is 3:
    return node == 3

valid_paths = []
for path in nx.all_simple_paths(G, source=0, target=7):
    cond = False
    for node in path:
        if check_attribute(G, node):
            cond = True
            valid_paths.append(path)
            break

lengths = [len(path) for path in valid_paths]
shortest_path = valid_paths[lengths.index(min(lengths))]
print('valid paths: {}'.format(valid_paths))
print('shortest_path: {}'.format(shortest_path))