我正在尝试使用.parquet
方法在Scala的Spark API中的一次调用中读取多个路径。
我有一个接收Seq[String]
的方法,但是当包含在方法调用中时似乎无法识别它,并尝试检索String
而不是Seq[String]
。
def readPaths(sparkSession: SparkSession, basePath: String, inputPaths: Seq[String]): Dataset[Row] = {
sparkSession.read
.option("basepath", basePath)
.parquet(inputPaths) // Doesn't accept 'inputPaths'
}
在注释部分,它只是抱怨Seq[String]
不是String
类型的对象,同时它确实接受普通的"", "", "", ""
。
答案 0 :(得分:2)
该:
def parquet(paths: String*): DataFrame
method需要一个可变参数,而不是一个明确的Seq。因此,在Scala中,您必须将其传递为:
def readPaths(sparkSession: SparkSession, basePath: String, inputPaths: Seq[String]): Dataset[Row] = {
sparkSession.read
.option("basepath", basePath)
.parquet(inputPaths:_*)
}
请注意val末尾的“:_ *”。
在spark2-shell上验证(带有Spark 2.3.0.cloudera3):
scala> case class MyProduct(key: Int, value: String, lastSeen: java.sql.Timestamp)
defined class MyProduct
scala> import org.apache.spark.sql.functions._
import org.apache.spark.sql.functions._
scala> val baseDS = spark.createDataset(0 until 1000).map(i => MyProduct(i, s"valueOf:$i", new java.sql.Timestamp(System.currentTimeMillis())))
baseDS: org.apache.spark.sql.Dataset[MyProduct] = [key: int, value: string ... 1 more field]
scala> baseDS.withColumn("state", lit("IT"))
res10: org.apache.spark.sql.DataFrame = [key: int, value: string ... 2 more fields]
scala> res10.write.mode("overwrite").partitionBy("state").parquet("/tmp/test/parquet/")
scala> baseDS.withColumn("state", lit("US"))
res12: org.apache.spark.sql.DataFrame = [key: int, value: string ... 2 more fields]
scala> res12.write.mode("append").partitionBy("state").parquet("/tmp/test/parquet/")
scala> val inputPaths = Seq("/tmp/test/parquet/state=IT", "/tmp/test/parquet/state=US")
inputPaths: Seq[String] = List(/tmp/test/parquet/state=IT, /tmp/test/parquet/state=US)
scala> val data = spark.read.parquet(inputPaths)
<console>:38: error: overloaded method value parquet with alternatives:
(paths: String*)org.apache.spark.sql.DataFrame <and>
(path: String)org.apache.spark.sql.DataFrame
cannot be applied to (Seq[String])
val data = spark.read.parquet(inputPaths)
^
scala> val data = spark.read.parquet(inputPaths:_*)
data: org.apache.spark.sql.DataFrame = [key: int, value: string ... 1 more field]
scala> data.show(10)
+---+-----------+--------------------+
|key| value| lastSeen|
+---+-----------+--------------------+
|500|valueOf:500|2019-02-04 17:05:...|
|501|valueOf:501|2019-02-04 17:05:...|
|502|valueOf:502|2019-02-04 17:05:...|
|503|valueOf:503|2019-02-04 17:05:...|
|504|valueOf:504|2019-02-04 17:05:...|
|505|valueOf:505|2019-02-04 17:05:...|
|506|valueOf:506|2019-02-04 17:05:...|
|507|valueOf:507|2019-02-04 17:05:...|
|508|valueOf:508|2019-02-04 17:05:...|
|509|valueOf:509|2019-02-04 17:05:...|
+---+-----------+--------------------+
only showing top 10 rows
scala>
答案 1 :(得分:1)
我认为parquet()
函数期望一个“ varargs”参数,即类型为String
的一个或多个参数。
您可以将其传递给Seq[String]
,但是必须给编译器提示,告诉编译器将Seq解压缩为多个参数。
一个示例来演示varargs的用法:
scala> def foo(i: String*) = i.mkString(",")
foo: (i: String*)String
scala> foo("a", "b", "c")
res0: String = a,b,c
scala> foo(Seq("a", "b", "c"))
<console>:13: error: type mismatch;
found : Seq[String]
required: String
foo(Seq("a", "b", "c"))
^
scala> foo(Seq("a", "b", "c"):_*)
res2: String = a,b,c
如您所见,:_*
提示解决了该问题。