几周前,我刚开始使用熊猫,现在我试图对行执行按元素划分,但无法找出实现它的正确方法。这是我的情况和数据
date type id ... 1096 1097 1098
0 2014-06-13 cal 1 ... 17.949524 16.247619 15.465079
1 2014-06-13 cow 32 ... 0.523429 -0.854286 -1.520952
2 2014-06-13 cow 47 ... 7.676000 6.521714 5.892381
3 2014-06-13 cow 107 ... 4.161714 3.048571 2.419048
4 2014-06-13 cow 137 ... 3.781143 2.557143 1.931429
5 2014-06-13 cow 255 ... 3.847273 2.509091 1.804329
6 2014-06-13 cow 609 ... 6.097714 4.837714 4.249524
7 2014-06-13 cow 721 ... 3.653143 2.358286 1.633333
8 2014-06-13 cow 817 ... 6.044571 4.934286 4.373333
9 2014-06-13 cow 837 ... 9.649714 8.511429 7.884762
10 2014-06-13 cow 980 ... 1.817143 0.536571 -0.102857
11 2014-06-13 cow 1730 ... 8.512571 7.114286 6.319048
12 2014-06-13 dark 1 ... 168.725714 167.885715 167.600001
my_data.columns
Index(['date', 'type', 'id', '188', '189', '190', '191', '192', '193', '194',
...
'1089', '1090', '1091', '1092', '1093', '1094', '1095', '1096', '1097',
'1098'],
dtype='object', length=914)
我的目标是用"type" == "cal"
将所有行除以行,但从列'188'
到列'1098'
(911列)
这些是我尝试过的方法:
提取感兴趣的行,并将其与apply(),divide()和 运算符“ /”:
>>> cal_r = my_data[my_data["type"]=="cal"].iloc[:,3:]
my_data.apply(lambda x: x.iloc[3:]/cal_r, axis=1)
0 188 189 190 191 192 193 194 195 ... 1091 10...
1 188 189 190 ... 10...
2 188 189 190 ... 109...
3 188 189 190 ... 1096...
4 188 189 190 191 ... ...
5 188 189 190 ... 10...
6 188 189 190 ... 109...
7 188 189 190 ... 1096...
8 188 189 190 ... 1096...
9 188 189 190 ... 1096 ...
10 188 189 190 ... 1...
11 188 189 190 ... 109...
12 188 189 190 191 ... ...
dtype: object
>>> mydata.apply(lambda x: x.iloc[3:].divide(cal_r,axis=1), axis=1)
Traceback (most recent call last):
File "<input>", line 1, in <module>
File "/usr/local/lib/python3.5/dist-packages/pandas/core/frame.py", line 6014, in apply
return op.get_result()
File "/usr/local/lib/python3.5/dist-packages/pandas/core/apply.py", line 142, in get_result
return self.apply_standard()
File "/usr/local/lib/python3.5/dist-packages/pandas/core/apply.py", line 248, in apply_standard
self.apply_series_generator()
File "/usr/local/lib/python3.5/dist-packages/pandas/core/apply.py", line 277, in apply_series_generator
results[i] = self.f(v)
File "<input>", line 1, in <lambda>
File "/usr/local/lib/python3.5/dist-packages/pandas/core/ops.py", line 1375, in flex_wrapper
self._get_axis_number(axis)
File "/usr/local/lib/python3.5/dist-packages/pandas/core/generic.py", line 375, in _get_axis_number
.format(axis, type(self)))
ValueError: ("No axis named 1 for object type <class 'pandas.core.series.Series'>", 'occurred at index 0')
不使用套用:
>>> my_data.iloc[:,3:].divide(cal_r)
188 189 190 191 192 193 ... 1093 1094 1095 1096 1097 1098
0 1.0 1.0 1.0 1.0 1.0 1.0 ... 1.0 1.0 1.0 1.0 1.0 1.0
1 NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN
2 NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN
3 NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN
4 NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN
5 NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN
6 NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN
7 NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN
8 NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN
9 NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN
10 NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN
11 NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN
12 NaN NaN NaN NaN NaN NaN ... NaN NaN NaN NaN NaN NaN
命令my_data.iloc[:,3:].divide(cal_r, axis=1)
和my_data.iloc[:,3:]/cal_r
给出相同的结果,只划分第一行。
如果我只选择一行,那就做得很好:
my_data.iloc[5,3:]/cal_r
188 189 190 ... 1096 1097 1098
0 48.8182 48.8274 22.4476 ... 0.214338 0.154428 0.116671
[1 rows x 911 columns]
我缺少一些基本的东西吗?我怀疑我需要将cal_r
行复制到整个数据的相同行数。
任何提示或指导都非常感谢。
答案 0 :(得分:1)
我相信您需要将Series
转换为numpy数组才能除以1d
数组:
cal_r = my_data.iloc[(my_data["type"]=="cal").values, 3:]
print (cal_r)
1096 1097 1098
0 17.949524 16.247619 15.465079
my_data.iloc[:, 3:] /= cal_r.values
print (my_data)
date type id 1096 1097 1098
0 2014-06-13 cal 1 1.000000 1.000000 1.000000
1 2014-06-13 cow 32 0.029161 -0.052579 -0.098348
2 2014-06-13 cow 47 0.427644 0.401395 0.381012
3 2014-06-13 cow 107 0.231857 0.187632 0.156420
4 2014-06-13 cow 137 0.210654 0.157386 0.124890
5 2014-06-13 cow 255 0.214338 0.154428 0.116671
6 2014-06-13 cow 609 0.339715 0.297749 0.274782
7 2014-06-13 cow 721 0.203523 0.145147 0.105614
8 2014-06-14 cow 817 0.336754 0.303693 0.282788
9 2014-06-14 cow 837 0.537603 0.523857 0.509843
10 2014-06-14 cow 980 0.101236 0.033025 -0.006651
11 2014-06-14 cow 1730 0.474251 0.437866 0.408601
12 2014-06-14 dark 1 9.400010 10.332943 10.837319
或者将DataFrame.squeeze
的一行DataFrame
转换为Series
,或按位置将第一行选择为Series
:
my_data.iloc[:, 3:] = my_data.iloc[:, 3:].div(cal_r.squeeze())
#alternative
#my_data.iloc[:, 3:] = my_data.iloc[:, 3:].div(cal_r.iloc[0])
print (my_data)
date type id 1096 1097 1098
0 2014-06-13 cal 1 1.000000 1.000000 1.000000
1 2014-06-13 cow 32 0.029161 -0.052579 -0.098348
2 2014-06-13 cow 47 0.427644 0.401395 0.381012
3 2014-06-13 cow 107 0.231857 0.187632 0.156420
4 2014-06-13 cow 137 0.210654 0.157386 0.124890
5 2014-06-13 cow 255 0.214338 0.154428 0.116671
6 2014-06-13 cow 609 0.339715 0.297749 0.274782
7 2014-06-13 cow 721 0.203523 0.145147 0.105614
8 2014-06-14 cow 817 0.336754 0.303693 0.282788
9 2014-06-14 cow 837 0.537603 0.523857 0.509843
10 2014-06-14 cow 980 0.101236 0.033025 -0.006651
11 2014-06-14 cow 1730 0.474251 0.437866 0.408601
12 2014-06-14 dark 1 9.400010 10.332943 10.837319